
COMPUTER NETWORKS
[R15A0513]

LECTURE NOTES

B.TECH III YEAR – II SEM (R15)

(2019-20)

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

III Year B. Tech. CSE –II Sem L T/P/D C
4 1/- / - 3

Objectives:
(R15A0513) Computer Networks

● To introduce the fundamental types of computer networks.
● To demonstrate the TCP/IP & OSI model merits & demerits.
● To know the role of various protocols in Networking

UNIT - I:
Introduction: Network, Uses of Networks, Types of Networks, Reference Models: TCP/IP Model,
The OSI Model, Comparison of the OSI and TCP/IP reference model. Architecture of Internet.
Physical Layer: Guided transmission media, Wireless transmission media, Switching

UNIT - II:
Data Link Layer - Design issues, Error Detection & Correction, Elementary Data Link Layer
Protocols, Sliding window protocols
Multiple Access Protocols - ALOHA, CSMA,CSMA/CD, CSMA/CA, Collision free protocols,
Ethernet- Physical Layer, Ethernet Mac Sub layer, Data link layer switching: Use of bridges,
learning bridges, spanning tree bridges, repeaters, hubs, bridges, switches, routers and
gateways.

UNIT - III:
Network Layer: Network Layer Design issues, store and forward packet switching connection
less and connection oriented networks-routing algorithms-optimality principle, shortest path,
flooding, Distance Vector Routing, Count to Infinity Problem, Link State Routing, Path Vector
Routing, Hierarchical Routing; Congestion control algorithms, IP addresses, CIDR, Subnetting,
SuperNetting, IPv4, Packet Fragmentation, IPv6 Protocol, Transition from IPv4 to IPv6, ARP,
RARP.

UNIT - IV:
Transport Layer: Services provided to the upper layers elements of transport protocol
addressing connection establishment, Connection release, Error Control & Flow Control, Crash
Recovery.
The Internet Transport Protocols: UDP, Introduction to TCP, The TCP Service Model, The TCP
Segment Header, The Connection Establishment, The TCP Connection Release, The TCP Sliding
Window, The TCP Congestion Control Algorithm.

UNIT - V: Application Layer- Introduction, providing services, Applications layer paradigms:
Client server model, HTTP, E-mail, WWW, TELNET, DNS; RSA algorithm,

TEXT BOOKS:

1. Computer Networks - Andrew S Tanenbaum, 4th Edition, Pearson Education.
2. Data Communications and Networking - Behrouz A. Forouzan, Fifth Edition TMH, 2013.

REFERENCES BOOKS:
1. An Engineering Approach to Computer Networks - S. Keshav, 2nd Edition, Pearson Education.
2. Understanding communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.
3. Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose, K.
W. Ross, 3rd Edition, Pearson Education.

Outcomes:

​ Students should be understand and explore the basics of Computer Networks and

Various Protocols.

​ Student will be in a position to understand the World Wide Web concepts.

​ Students will be in a position to administrate a network and flow of information further

​ Student can understand easily the concepts of network security, Mobile

INDEX
UNIT
NO

TOPIC PAGE NO

I

INTRODUCTION TO NETOWRKS 1

TYPES OF NETWORKS, 4

INTRODUCTION TO PYSICAL LAYER 18

COMPARISON OF OSI AND TCP/IP
PROTOCOLS

25

II

DATA LINK LAYER DESIGN ISSUES 35

SLIDI NGWINDOW PROTOCOLS 41

MULTIPLE ACCESS PROTOCOLS 49

III

NETWORK LAYER DESIGN ISSUES 78

CONNECTION LESS AND
CONNECTION ORIENTED PROTOCOLS

80

ROUTING PROTOCOLS,IP ADDRESS 81

IV
TRANSPORT LAYER SERVICES
PROVIDED

101

THE INTERNET TRANSPORT
PROTOCOLS

130

V
APPLICATION LAYER SERVICES 249

APPLICATIONS LAYER PARADISMS 256

NETWORKS

UNIT - I

A network is a set of devices (often referred to as nodes) connected by

communication links. A node can be a computer, printer, or any other device capable of

sending and/or receiving data generated by other nodes on the network.

“Computer network’’ to mean a collection of autonomous computers

interconnected by a single technology. Two computers are said to be interconnected if

they are able to exchange information.

The connection need not be via a copper wire; fiber optics, microwaves, infrared, and

communication satellites can also be used.

Networks come in many sizes, shapes and forms, as we will see later. They are

usually connected together to make larger networks, with the Internet being the most

well-known example of a network of networks.

There is considerable confusion in the literature between a computer network and

a distributed system. The key distinction is that in a distributed system, a collection of

independent computers appears to its users as a single coherent system. Usually, it has a

single model or paradigm that it presents to the users. Often a layer of software on top

of the operating system, called middleware, is responsible for implementing this

model. A well-known example of a distributed system is the World Wide Web. It runs

on top of the Internet and presents a model in which everything looks like a document

(Web page).

USES OF COMPUTER NETWORKS

1. Business Applications

​ to distribute information throughout the company (resource sharing). sharing

physical resources such as printers, and tape backup systems, is sharing

information

​ client-server model. It is widely used and forms the basis of much network

usage.

​ communication medium among employees.email (electronic mail), which

employees generally use for a great deal of daily communication.

​ Telephone calls between employees may be carried by the computer network

instead of by the phone company. This technology is called IP telephony or

Voice over IP (VoIP) when Internet technology is used.

​ Desktop sharing lets remote workers see and interact with a graphical computer

screen

​ doing business electronically, especially with customers and suppliers. This

new model is called e-commerce (electronic commerce) and it has grown rapidly in

recent years.

2 Home Applications

​ peer-to-peer communication

​ person-to-person communication

​ electronic commerce

​ entertainment.(game playing,)

3 Mobile Users

​ Text messaging or texting

​ Smart phones,

​ GPS (Global Positioning System)

​ m-commerce

​ NFC (Near Field Communication)

4 Social Issues

With the good comes the bad, as this new-found freedom brings with it many unsolved

social, political, and ethical issues.

Social networks, message boards, content sharing sites, and a host of other

applications allow people to share their views with like-minded individuals. As long as

the subjects are restricted to technical topics or hobbies like gardening, not too many

problems will arise.

The trouble comes with topics that people actually care about, like politics,

religion, or sex. Views that are publicly posted may be deeply offensive to some people.

Worse yet, they may not be politically correct. Furthermore, opinions need not be

limited to text; high-resolution color photographs and video clips are easily shared over

computer networks. Some people take a live-and-let-live view, but others feel that

posting certain material (e.g., verbal attacks on particular countries or religions,

pornography, etc.) is simply unacceptable and that such content must be censored.

Different countries have different and conflicting laws in this area. Thus, the debate

rages.

Computer networks make it very easy to communicate. They also make it easy for

the people who run the network to snoop on the traffic. This sets up conflicts over

issues such as employee rights versus employer rights. Many people read and

write email at work. Many employers have claimed the right to read and possibly censor

employee messages, including messages sent from a home computer outside working

hours. Not all employees agree with this, especially the latter part.

Another conflict is centered around government versus citizen’s rights.

A new twist with mobile devices is location privacy. As part of the process of providing

service to your mobile device the network operators learn where you are at different

times of day. This allows them to track your movements. They may know which nightclub

you frequent and which medical center you visit.

Phishing ATTACK: Phishing is a type of social engineering attack often used to steal user

data, including login credentials and credit card numbers. It occurs when an attacker,

masquerading as a trusted entity, dupes a victim into opening an email, instant message,

or text message.

BOTNET ATTACK: Botnets can be used to perform distributed denial-of-service attack

(DDoS attack), steal data, send spam, and allows the attacker to access the device and

its connection.

The effectiveness of a data communications system depends on four fundamental

characteristics: delivery, accuracy, timeliness, and jitter.

I. Delivery. The system must deliver data to the correct destination. Data must be

received by the intended device or user and only by that device or user.

2 Accuracy. The system must deliver the data accurately. Data that have been altered in

transmission and left uncorrected are unusable.

3. Timeliness. The system must deliver data in a timely manner. Data delivered late

are useless. In the case of video and audio, timely delivery means delivering data as they

are produced, in the same order that they are produced, and without significant delay.

This kind of delivery is called real-time transmission.

4. Jitter. Jitter refers to the variation in the packet arrival time. It is the uneven

delay in the delivery of audio or video packets. For example, let us assume that video

packets are sent every 30 ms. If some of the packets arrive with 30-ms delay and others

with 40-ms delay, an uneven quality in the video is the result.

A data communications system has five components

I. Message. The message is the information (data) to be communicated. Popular forms of

information include text, numbers, pictures, audio, and video. 2 Sender. The sender is

the device that sends the data message. It can be a computer, workstation, telephone

handset, video camera, and so on.

3. Receiver. The receiver is the device that receives the message. It can be a

computer, workstation, telephone handset, television, and so on.

4. Transmission medium. The transmission medium is the physical path by which a

message travels from sender to receiver. Some examples of transmission media include

twisted-pair wire, coaxial cable, fiber-optic cable, and radio waves.

5. Protocol. A protocol is a set of rules that govern data communications. It

represents an agreement between the communicating devices. Without a protocol, two

devices may be connected but not communicating, just as a person speaking French

cannot be understood by a person who speaks only Japanese.

Data Representation

https://en.wikipedia.org/wiki/Distributed_denial-of-service_attack
https://en.wikipedia.org/wiki/Distributed_denial-of-service_attack

Text

Numbers

Images

Audio

Video

Data Flow
Communication between two devices can be simplex, half-duplex, or full-duplex as

shown in Figure.

Simplex In simplex mode, the communication is unidirectional, as on a one- way street.

Only one of the two devices on a link can transmit; the other can only receive (Figure a).

Keyboards and traditional monitors are examples of simplex devices.

Half-Duplex

In half-duplex mode, each station can both transmit and receive, but not at the same

time. When one device is sending, the other can only receive, and vice versa (Figure b).

Walkie-talkies and CB (citizens band) radios are both half- duplex systems.

Full-Duplex

In full-duplex, both stations can transmit and receive simultaneously (Figure c). One

common example of full-duplex communication is the telephone network. When two

people are communicating by a telephone line, both can talk and listen at the same time.

The full-duplex mode is used when communication in both directions is required all the

time.

Network Criteria

A network must be able to meet a certain number of criteria. The most important of

these are performance, reliability, and security.

Performance

Performance can be measured in many ways, including transit time and response time.

Transit time is the amount of time required for a message to travel from one device to

another. Response time is the elapsed time between

an inquiry and a response. The performance of a network depends on a number of

factors, including the number of users, the type of transmission medium, the capabilities

of the connected hardware, and the efficiency of the software.

Performance is often evaluated by two networking metrics: throughput and delay. We

often need more throughput and less delay. However, these two criteria are often

contradictory. If we try to send more data to the network, we may increase throughput

but we increase the delay because of traffic congestion in the network.

Reliability: In addition to accuracy of delivery, network reliability is measured by the

frequency of failure, the time it takes a link to recover from a failure, and the network's

robustness in a catastrophe.

Security: Network security issues include protecting data from unauthorized access,

protecting data from damage and development, and implementing policies and

procedures for recovery from breaches and data losses.

Physical Structures

Before discussing networks, we need to define some network attributes.

Type of Connection

A network is two or more devices connected through links. A link is a

communications pathway that transfers data from one device to another.

There are two possible types of connections: point-to-point and multipoint.

Point-to-Point A point-to-point connection provides a dedicated link between two

devices. The entire capacity of the link is reserved for transmission between those two

devices. Most point-to-point connections use an actual length of wire or cable to

connect the two ends, but other options, such as microwave or satellite links, are also

possible

When you change television channels by infrared remote control, you are establishing a

point-to-point connection between the remote control and the television's control

system.

Multipoint A multipoint (also called multi-drop) connection is one in which more than

two specific devices share a single link

In a multipoint environment, the capacity of the channel is shared, either spatially or

temporally. If several devices can use the link simultaneously, it is a spatially shared

connection. If users must take turns, it is a timeshared connection.

Physical Topology

The term physical topology refers to the way in which a network is laid out physically.

Two or more devices connect to a link; two or more links form a topology. The topology

of a network is the geometric representation of the relationship of all the links and

linking devices (usually called nodes) to one another.

There are four basic topologies possible: mesh, star, bus, and ring

MESH:

A mesh topology is the one where every node is connected to every other node in the

network.

A mesh topology can be a full mesh topology or a partially connected mesh topology.

In a full mesh topology, every computer in the network has a connection to each of the

other computers in that network. The number of connections in this

network can be calculated using the following formula (n is the number of computers in

the network): n(n-1)/2

In a partially connected mesh topology, at least two of the computers in the network

have connections to multiple other computers in that network. It is an inexpensive way

to implement redundancy in a network. In the event that one of the primary computers

or connections in the network fails, the rest of the network continues to operate

normally.

Advantages of a mesh topology

​ Can handle high amounts of traffic, because multiple devices can transmit data

simultaneously.

​ A failure of one device does not cause a break in the network or transmission of data.

​ Adding additional devices does not disrupt data transmission between other devices.

Disadvantages of a mesh topology

​ The cost to implement is higher than other network topologies, making it a less

desirable option.

​ Building and maintaining the topology is difficult and time consuming.

​ The chance of redundant connections is high, which adds to the high costs and

potential for reduced efficiency.

STAR:

A star network, star topology is one of the most common network setups. In this

configuration, every node connects to a central network device, like a hub, switch,

or computer. The central network device acts as a server and the peripheral devices act

as clients. Depending on the type of network card used in each computer of the star

topology, a coaxial cable or a RJ-45 network cable is used to connect computers

together.

Advantages of star topology

​ Centralized management of the network, through the use of the central computer,

hub, or switch.

​ Easy to add another computer to the network.

​ If one computer on the network fails, the rest of the network continues to function

https://www.computerhope.com/jargon/n/node.htm
https://www.computerhope.com/jargon/h/hub.htm
https://www.computerhope.com/jargon/s/switch.htm
https://www.computerhope.com/jargon/s/server.htm
https://www.computerhope.com/jargon/c/client.htm
https://www.computerhope.com/jargon/n/nic.htm
https://www.computerhope.com/jargon/c/coaxialc.htm
https://www.computerhope.com/jargon/r/rj45.htm

normally.

​ The star topology is used in local-area networks (LANs), High-speed LANs often use a

star topology with a central hub.
Disadvantages of star topology

​ Can have a higher cost to implement, especially when using a switch or router as the

central network device.

​ The central network device determines the performance and number of nodes the

network can handle.

​ If the central computer, hub, or switch fails, the entire network goes down and all

computers are disconnected from the network

BUS:

a line topology, a bus topology is a network setup in which each computer and network

device are connected to a single cable or backbone.

Advantages of bus topology

​ It works well when you have a small network.

​ It's the easiest network topology for connecting computers or peripherals in a

linear fashion.

​It requires less cable length than a star topology.

Disadvantages of bus topology

​ It can be difficult to identify the problems if the whole network goes down.

​ It can be hard to troubleshoot individual device issues.

​ Bus topology is not great for large networks.

​ Terminators are required for both ends of the main cable.

​ Additional devices slow the network down.

​ If a main cable is damaged, the network fails or splits into two.

RING:

https://www.computerhope.com/jargon/b/backbone.htm

A ring topology is a network configuration in which device connections create a circular

data path. In a ring network, packets of data travel from one device to the next until

they reach their destination. Most ring topologies allow packets to travel only in one

direction, called a unidirectional ring network. Others permit data to move in either

direction, called bidirectional.

The major disadvantage of a ring topology is that if any individual connection in the ring

is broken, the entire network is affected.

Ring topologies may be used in either local area networks (LANs) or wide area networks

(WANs).

Advantages of ring topology

​ All data flows in one direction, reducing the chance of packet collisions.

​ A network server is not needed to control network connectivity between each

workstation.

​ Data can transfer between workstations at high speeds.

​ Additional workstations can be added without impacting performance of the

network.

Disadvantages of ring topology

​ All data being transferred over the network must pass through each workstation on

the network, which can make it slower than a star topology.

​ The entire network will be impacted if one workstation shuts down.

​ The hardware needed to connect each workstation to the network is more

expensive than Ethernet cards and hubs/switches.

Hybrid Topology A network can be hybrid. For example, we can have a main star

topology with each branch connecting several stations in a bus topology as shown in

Figure

https://www.computerhope.com/jargon/n/network.htm
https://www.computerhope.com/jargon/d/data.htm
https://www.computerhope.com/jargon/p/packet.htm
https://www.computerhope.com/jargon/l/lan.htm
https://www.computerhope.com/jargon/w/wan.htm
https://www.computerhope.com/jargon/s/startopo.htm

Types of Network based on size

The types of network are classified based upon the size, the area it covers and its

physical architecture. The three primary network categories are LAN, WAN and MAN.

Each network differs in their characteristics such as distance, transmission speed, cables

and cost.

Basic types

LAN (Local Area Network)

Group of interconnected computers within a small area. (room, building,

campus)

Two or more pc's can from a LAN to share files, folders, printers, applications and other

devices.

Coaxial or CAT 5 cables are normally used for connections. Due to

short distances, errors and noise are minimum.

Data transfer rate is 10 to 100 mbps.

Example: A computer lab in a school. MAN

(Metropolitan Area Network) Design to

extend over a large area.

Connecting number of LAN's to form larger network, so that resources can be shared.

Networks can be up to 5 to 50 km. Owned by

organization or individual. Data transfer rate

is low compare to LAN.

Example: Organization with different branches located in the city.

WAN (Wide Area Network)

Are country and worldwide network.

Contains multiple LAN's and MAN's.

Distinguished in terms of geographical range. Uses

satellites and microwave relays.

Data transfer rate depends upon the ISP provider and varies over the location. Best

example is the internet.

Other types

WLAN (Wireless LAN)

A LAN that uses high frequency radio waves for communication. Provides short

range connectivity with high speed data transmission. PAN (Personal Area

Network)

Network organized by the individual user for its personal use.

SAN (Storage Area Network)

Connects servers to data storage devices via fiber-optic cables. E.g.: Used

for daily backup of organization or a mirror copy

A transmission medium can be broadly defined as anything that can carry information from

a source to a destination.

Classes of transmission media

Guided Media: Guided media, which are those that provide a medium from one device to

another, include twisted-pair cable, coaxial cable, and fiber-optic cable.

Twisted-Pair Cable: A twisted pair consists of two conductors (normally copper), each

with its own plastic insulation, twisted together. One of the wires is used to carry signals

to the receiver, and the other is used only as a ground reference.

Unshielded Versus Shielded Twisted-Pair Cable

The most common twisted-pair cable used in communications is referred to as unshielded

twisted-pair (UTP). STP cable has a metal foil or braided mesh covering that encases

each pair of insulated conductors. Although metal casing improves the quality of cable by

preventing the penetration of noise or crosstalk, it is bulkier and more expensive.

The most common UTP connector is RJ45 (RJ stands for registered jack)

Applications

Twisted-pair cables are used in telephone lines to provide voice and data channels.

Local-area networks, such as l0Base-T and l00Base-T, also use twisted-pair cables.

Coaxial Cable

Coaxial cable (or coax) carries signals of higher frequency ranges than those in twisted

pair cable. coax has a central core conductor of solid or stranded wire (usuallycopper)

enclosed in an insulating sheath, which is, in turn, encased in an outer conductor of

metal foil, braid, or a combination of the two. The outer metallic wrapping serves both

as a shield against noise and as the second conductor, which completes the circuit.This

outer conductor is also enclosed in an insulating sheath, and the whole cable is

protected by a plastic cover.

The most common type of connector used today is the Bayone-Neill-Concelman (BNe),

connector.

Applications

Coaxial cable was widely used in analog telephone networks,digital telephone networks

Cable TV networks also use coaxial cables.

Another common application of coaxial cable is in traditional Ethernet LANs

Fiber-Optic Cable

A fiber-optic cable is made of glass or plastic and transmits signals in the form of light.

Light travels in a straight line as long as it is moving through a single uniform substance.

If a ray of light traveling through one substance suddenly enters another substance(of a

different density), the ray changes direction.

Bending of light ray

Optical fibers use reflection to guide light through a channel. A glass or plastic core is

surrounded by a cladding of less dense glass or plastic.

Propagation Modes

Multimode is so named because multiple beams from a light source move through the

core in different paths. How these beams move within the cable depends on the

structure of the core, as shown in Figure.

In multimode step-index fiber, the density of the core remains constant from the center

to the edges. A beam of light moves through this constant density in a straight line until

it reaches the interface of the core and the cladding. The term step index refers to the

suddenness of this change, which contributes to the distortion of the signal as it passes

through the fiber.

A second type of fiber, called multimode graded-index fiber, decreases this distortion of

the signal through the cable. The word index here refers to the index of refraction.

Single-Mode: Single-mode uses step-index fiber and a highly focused source of light

that limits beams to a small range of angles, all close to the horizontal.

Fiber Construction

The subscriber channel (SC) connector, The straight-tip (ST) connector,

MT-RJ(mechanical transfer registered jack) is a connector

Applications

Fiber-optic cable is often found in backbone networks because its wide

bandwidth is cost-effective..

Some cable TV companies use a combination of optical fiber and coaxial cable,thus

creating a hybrid network.

Local-area networks such as 100Base-FX network (Fast Ethernet) and

1000Base-X also use fiber-optic cable

Advantages and Disadvantages of Optical Fiber

Advantages Fiber-optic cable has several advantages over metallic cable (twisted pair or

coaxial).

1 Higher bandwidth.

2 Less signal attenuation. Fiber-optic transmission distance is significantly

greaterthan that of other guided media. A signal can run for 50 km without requiring

regeneration. We need repeaters every 5 km for coaxial or twisted- pair cable.

3 Immunity to electromagnetic interference. Electromagnetic noise cannot affect

fiber-optic cables.

4 Resistance to corrosive materials. Glass is more resistant to corrosive materials

than copper.

5 Light weight. Fiber-optic cables are much lighter than copper cables.

6 Greater immunity to tapping. Fiber-optic cables are more immune to tapping than

copper cables. Copper cables create antenna effects that can easily be tapped.

Disadvantages There are some disadvantages in the use of optical fiber. 1Installation and

maintenance

2 Unidirectional light propagation. Propagation of light is unidirectional. If we need

bidirectional communication, two fibers are needed.

3 Cost. The cable and the interfaces are relatively more expensive than those of

other guided media. If the demand for bandwidth is not high, often the use of optical

fiber cannot be justified.

UNGUIDED MEDIA: WIRELESS

Unguided media transport electromagnetic waves without using a physical conductor.

This type of communication is often referred to as wireless communication.

Radio Waves

Microwaves

Infrared

Unguided signals can travel from the source to destination in several ways: ground

propagation, sky propagation, and line-of-sight propagation, as shown in Figure

Radio Waves

Electromagnetic waves ranging in frequencies between 3 kHz and 1 GHz are normally

called radio waves. Radio waves are omni directional. When an antenna transmits radio

waves, they are propagated in all directions. This means that the sending and receiving

antennas do not have to be aligned. A sending antenna sends waves that can be received

by any receiving antenna. The omni directional property has a disadvantage, too. The

radio waves transmitted by one antenna are susceptible to interference by another

antenna that may send signals using the same frequency or band.

Omni directional Antenna

Radio waves use omnidirectional antennas that send out signals in all directions. Based

on the wavelength, strength, and the purpose of transmission, we can have several types

of antennas. Figure shows an omnidirectional antenna.

Applications

The Omni directional characteristics of radio waves make them useful for multicasting,

in which there is one sender but many receivers. AM and FM radio, television, maritime

radio, cordless phones, and paging are examples of multicasting.

Microwaves

Electromagnetic waves having frequencies between 1 and 300 GHz are called

microwaves. Microwaves are unidirectional. The sending and receiving antennas need to

be aligned. The unidirectional property has an obvious advantage. A pair of antennas

can be aligned without interfering with another pair of aligned antennas

Unidirectional Antenna

Microwaves need unidirectional antennas that send out signals in one direction. Two

types of antennas are used for microwave communications: the parabolic dish and the

horn

Applications:

Microwaves are used for unicast communication such as cellular telephones, satellite

networks, and wireless LANs

Infrared

Infrared waves, with frequencies from 300 GHz to 400 THz (wavelengths from 1 mm to

770 nm), can be used for short-range communication. Infrared waves, having high

frequencies, cannot penetrate walls. This advantageous

characteristic prevents interference between one system and another; a short- range

communication system in one room cannot be affected by another system in the next

room.

When we use our infrared remote control, we do not interfere with the use of the

remote by our neighbors. Infrared signals useless for long-range communication. In

addition, we cannot use infrared waves outside a building because the sun's rays contain

infrared waves that can interfere with the communication.

Applications:

Infrared signals can be used for short-range communication in a closed area using

line-of-sight propagation.

Switching

A network is a set of connected devices. Whenever we have multiple devices, we

have the problem of how to connect them to make one-to-one communication possible.

One solution is to make a point-to-point connection between each pair of devices (a

mesh topology) or between a central device and every other device (a star topology).

These methods, however, are impractical and wasteful when applied to very large

networks.

The number and length of the links require too much infrastructure to be

cost-efficient, and the majority of those links would be idle most of the time.

A better solution is switching. A switched network consists of a series of interlinked

nodes, called switches. Switches are devices capable of creating temporary connections

between two or more devices linked to the switch. In a switched network, some of these

nodes are connected to the end systems (computers or telephones, for example). Others

are used only for routing. Figure shows a switched network.

We can then divide today's networks into three broad categories: circuit- switched

networks, packet-switched networks, and message-switched. Packet- switched networks

can further be divided into two subcategories-virtual-circuit networks and datagram

networks as shown in Figure.

CIRCUIT-SWITCHED NETWORKS

A circuit-switched network consists of a set of switches connected by physical

links. A connection between two stations is a dedicated path made of one or more links.

However, each connection uses only one dedicated channel on each link. Each link is

normally divided into n channels by using FDM or TDM.

In circuit switching, the resources need to be reserved during the setup phase;

the resources remain dedicated for the entire duration of data transfer until the teardown

phase

Three Phases

The actual communication in a circuit-switched network requires three phases: connection

setup, data transfer, and connection teardown.

Setup Phase

Before the two parties (or multiple parties in a conference call) can communicate,

a dedicated circuit (combination of channels in links) needs to be established.

Connection setup means creating dedicated channels between the switches. For

example, in Figure, when system A needs to connect to system M, it sends a setup

request that includes the address of system M, to switch I. Switch I finds a channel

between itself and switch IV that can be dedicated for this purpose. Switch I then sends

the request to switch IV, which finds a

dedicated channel between itself and switch III. Switch III informs system M of system A's

intention at this time.

In the next step to making a connection, an acknowledgment from system M needs

to be sent in the opposite direction to system A. Only after system A receives this

acknowledgment is the connection established.

Data Transfer Phase

After the establishment of the dedicated circuit (channels), the two parties can transfer

data.

Teardown Phase

When one of the parties needs to disconnect, a signal is sent to each switch to release the

resources.

Efficiency

It can be argued that circuit-switched networks are not as efficient as the other two

types of networks because resources are allocated during the entire duration of the

connection. These resources are unavailable to other connections.

Delay

Although a circuit-switched network normally has low efficiency, the delay in this type of

network is minimal. During data transfer the data are not delayed at each switch; the

resources are allocated for the duration of the connection.

The total delay is due to the time needed to create the connection, transfer data, and

disconnect the circuit.

Switching at the physical layer in the traditional telephone network

uses the circuit-switching approach.

DATAGRAM NETWORKS

In a packet-switched network, there is no resource reservation; resources

are allocated on demand. The allocation is done on a first come, first-served basis. When

a switch receives a packet, no matter what is the source or destination, the packet must

wait if there are other packets being processed. This lack of reservation may create

delay. For example, if we do not have a reservation at a restaurant, we might have to

wait.

In a datagram network, each packet is treated independently of all others. Packets

in this approach are referred to as datagrams. Datagram switching is normally done at

the network layer.

Figure shows how the datagram approach is used to deliver four packets from

station A to station X. The switches in a datagram network are traditionally referred to

as routers.

The datagram networks are sometimes referred to as connectionless networks. The

term connectionless here means that the switch (packet switch) does not keep

information about the connection state. There are no setup or teardown phases. Each

packet is treated the same by a switch regardless of its source or destination.

A switch in a datagram network uses a routing table that is based on the

destination address. The destination address in the header of a packet in a datagram

network remains the same during the entire journey of the packet.

Efficiency

The efficiency of a datagram network is better than that of a circuit-switched network;

resources are allocated only when there are packets to be transferred. Delay

There may be greater delay in a datagram network than in a virtual-circuit network.

Although there are no setup and teardown phases, each packet may experience a wait at

a switch before it is forwarded. In addition, since not all packets in a message

necessarily travel through the same switches, the delay is not uniform for the packets of

a message.

Switching in the Internet is done by using the datagram approach to packet

switching at the network layer.

VIRTUAL-CIRCUIT NETWORKS

A virtual-circuit network is a cross between a circuit-switched network and a

datagram network. It has some characteristics of both.

1. As in a circuit-switched network, there are setup and teardown phases in addition

to the data transfer phase.

2. Resources can be allocated during the setup phase, as in a circuit-switched

network, or on demand, as in a datagram network.

3. As in a datagram network, data are packetized and each packet carries an address

in the header. However, the address in the header has local jurisdiction (it defines what

should be the next switch and the channel on which the packet is being carried), not

end-to-end jurisdiction.

4. As in a circuit-switched network, all packets follow the same path established

during the connection.

5. A virtual-circuit network is normally implemented in the data link layer, while a

circuit-switched network is implemented in the physical layer and a datagram network in

the network layer.

Addressing

In a virtual-circuit network, two types of addressing are involved: global and local

(virtual-circuit identifier).

Global Addressing

A source or a destination needs to have a global address-an address that can be unique in

the scope of the network.

Virtual-Circuit Identifier

The identifier that is actually used for data transfer is called the virtual-circuit identifier

(VCI). A VCI, unlike a global address, is a small number that has only switch scope; it is

used by a frame between two switches. When a frame arrives at a switch, it has a VCI;

when it leaves, it has a different VCl.

Figure shows how the VCI in a data frame changes from one switch to another. Note that

a VCI does not need to be a large number since each switch can use its own unique set of

VCls.

Three Phases

Three phases in a virtual-circuit network: setup, data transfer, and teardown. We first

discuss the data transfer phase, which is more straightforward; we then talk about the

setup and teardown phases.

Data Transfer Phase

To transfer a frame from a source to its destination, all switches need to have a

table entry for this virtual circuit. The table, in its simplest form, has four columns.

We show later how the switches make their table entries, but for the moment we

assume that each switch has a table with entries for all active virtual circuits. Figure

shows such a switch and its corresponding table.

Figure shows a frame arriving at port 1 with a VCI of 14. When the frame arrives,

the switch looks in its table to find port 1 and a VCI of 14. When it is found, the switch

knows to change the VCI to 22 and send out the frame from port 3.

Figure shows how a frame from source A reaches destination B and how its VCI changes

during the trip.

Each switch changes the VCI and routes the frame.

The data transfer phase is active until the source sends all its frames to the

destination. The procedure at the switch is the same for each frame of a message. The

process creates a virtual circuit, not a real circuit, between the source and destination.

Setup Phase

In the setup phase, a switch creates an entry for a virtual circuit. For example, suppose

source A needs to create a virtual circuit to B. Two steps are required: the setup request

and the acknowledgment.
Setup Request A setup request frame is sent from the source to the destination. Figure

shows the process.

a. Source A sends a setup frame to switch 1.

b. Switch 1 receives the setup request frame. It knows that a frame going from A to B

goes out through port 3. For the moment, assume that it knows the output port. The

switch creates an entry in its table for this virtual circuit, but it is only able to fill three

of the four columns. The switch assigns the incoming port (1) and chooses an available

incoming VCI (14) and the outgoing port (3). It does not yet know the outgoing VCI, which

will be found during the acknowledgment step. The switch then forwards the frame

through port 3 to switch 2.

c. Switch 2 receives the setup request frame. The same events happen here as at

switch 1; three columns of the table are completed: in this case, incoming port (l),

incoming VCI (66), and outgoing port (2).

d. Switch 3 receives the setup request frame. Again, three columns are completed:

incoming port (2), incoming VCI (22), and outgoing port (3).

e. Destination B receives the setup frame, and if it is ready to receive frames from A,

it assigns a VCI to the incoming frames that come from A, in this case

77. This VCI lets the destination know that the frames come from A, and not other

sources.

Acknowledgment A special frame, called the acknowledgment frame, completes the

entries in the switching tables.

Figure shows the process.

a. The destination sends an acknowledgment to switch 3. The acknowledgment

carries the global source and destination addresses so the switch knows which entry in

the table is to be completed. The frame also carries VCI 77, chosen by the destination as

the incoming VCI for frames from A. Switch 3 uses this VCI to complete the outgoing VCI

column for this entry. Note that 77 is the incoming VCI for destination B, but the

outgoing VCI for switch 3.

b. Switch 3 sends an acknowledgment to switch 2 that contains its incoming VCI in

the table, chosen in the previous step. Switch 2 uses this as the outgoing VCI in the

table.

c. Switch 2 sends an acknowledgment to switch 1 that contains its incoming VCI in

the table, chosen in the previous step. Switch 1 uses this as the outgoing VCI in the

table.

d. Finally switch 1 sends an acknowledgment to source A that contains its incoming

VCI in the table, chosen in the previous step.

e. The source uses this as the outgoing VCI for the data frames to be sent to

destination B.

Teardown Phase

In this phase, source A, after sending all frames to B, sends a special frame called a

teardown request. Destination B responds with a teardown confirmation frame. All

switches delete the corresponding entry from their tables.

Efficiency

In virtual-circuit switching, all packets belonging to the same source and destination

travel the same path; but the packets may arrive at the destination with different delays

if resource allocation is on demand.

Delay

In a virtual-circuit network, there is a one-time delay for setup and a one-time delay for

teardown. If resources are allocated during the setup phase, there is no wait time for

individual packets. Figure shows the delay for a packet traveling through two switches

in a virtual-circuit network

Switching at the data link layer in a switched WAN is normally implemented by using

virtual-circuit techniques.

Comparison

Diagrams from Tanenbaum Textbook

OSI

​ OSI stands for Open Systems Interconnection

​ Created by International Standards Organization (ISO)

​ Was created as a framework and reference model to explain how different networking

technologies work together and interact

​ It is not a standard that networking protocols must follow

​ Each layer has specific functions it is responsible for

​ All layers work together in the correct order to move data around a network

Top to bottom

–All People Seem To Need Data Processing Bottom to

top

–Please Do Not Throw Sausage Pizza Away

Physical Layer

​ Deals with all aspects of physically moving data from one computer to the next

​ Converts data from the upper layers into 1s and 0s for transmission over media

​ Defines how data is encoded onto the media to transmit the data

​ Defined on this layer: Cable standards, wireless standards, and fiber optic standards.

Copper wiring, fiber optic cable, radio frequencies, anything that can be used to transmit

data is defined on the Physical layer of the OSI Model

​ Device example: Hub

​ Used to transmit data

Data Link Layer

​ Is responsible for moving frames from node to node or computer to computer

​ Can move frames from one adjacent computer to another, cannot move frames across

routers

​ Encapsulation = frame

​ Requires MAC address or physical address

​ Protocols defined include Ethernet Protocol and Point-to-Point Protocol (PPP)

​ Device example: Switch

​ Two sublayers: Logical Link Control (LLC) and the Media Access Control (MAC)

o Logical Link Control (LLC)

▪ –Data Link layer addressing, flow control, address notification, error control

o Media Access Control (MAC)

▪ –Determines which computer has access to the network media at any given time

▪ –Determines where one frame ends and the next one starts, called frame

synchronization

Network Layer

​ Responsible for moving packets (data) from one end of the network to the other, called

end-to-end communications

​ Requires logical addresses such as IP addresses

​ Device example: Router

​ –Routing is the ability of various network devices and their related software to move data

packets from source to destination

Transport Layer

​ Takes data from higher levels of OSI Model and breaks it into segments that can be sent

to lower-level layers for data transmission

​ Conversely, reassembles data segments into data that higher-level protocols

and applications can use

​ Also puts segments in correct order (called sequencing) so they can be reassembled in

correct order at destination

​ Concerned with the reliability of the transport of sent data

​ May use a connection-oriented protocol such as TCP to ensure destination received

segments

​ May use a connectionless protocol such as UDP to send segments without assurance of

delivery

​ Uses port addressing

Session Layer

​ Responsible for managing the dialog between networked devices

​ Establishes, manages, and terminates connections

​ Provides duplex, half-duplex, or simplex communications between devices

​ Provides procedures for establishing checkpoints, adjournment, termination, and

restart or recovery procedures

Presentation Layer

​ Concerned with how data is presented to the network

​ Handles three primary tasks: –Translation , –Compression , –Encryption

Application Layer

​ Contains all services or protocols needed by application software or operating system to

communicate on the network

​ Examples

o –Firefox web browser uses HTTP (Hyper-Text Transport Protocol)

o –E-mail program may use POP3 (Post Office Protocol version 3) to read e-mails and SMTP

(Simple Mail Transport Protocol) to send e-mails

The interaction between layers in the OSI model

An exchange using the OSI model

TCP/IP Model (Transmission Control Protocol/Internet Protocol)

–A protocol suite is a large number of related protocols that work together to allow

networked computers to communicate

Relationship of layers and addresses in TCP/IP

Application Layer

​ Application layer protocols define the rules when implementing specific network

applications

​ Rely on the underlying layers to provide accurate and efficient data delivery

​ Typical protocols:

o FTP – File Transfer Protocol

▪ For file transfer

o Telnet – Remote terminal protocol

▪ For remote login on any other computer on the network

o SMTP – Simple Mail Transfer Protocol

▪ For mail transfer

o HTTP – Hypertext Transfer Protocol

▪ For Web browsing

​ Encompasses same functions as these OSI Model layers Application

Presentation Session

Transport Layer

​ TCP is a connection-oriented protocol

o Does not mean it has a physical connection between sender and receiver

o TCP provides the function to allow a connection virtually exists – also called virtual

circuit

​ UDP provides the functions:

o Dividing a chunk of data into segments

o Reassembly segments into the original chunk

o Provide further the functions such as reordering and data resend

​ Offering a reliable byte-stream delivery service

​ Functions the same as the Transport layer in OSI

​ Synchronize source and destination computers to set up the session between the

respective computers

Internet Layer

​ The network layer, also called the internet layer, deals with packets and connects

independent networks to transport the packets across network boundaries. The network

layer protocols are the IP and the Internet Control Message Protocol (ICMP), which is

used for error reporting.

Host-to-network layer

The Host-to-network layer is the lowest layer of the TCP/IP reference model. It

combines the link layer and the physical layer of the ISO/OSI model. At this layer,

data is transferred between adjacent network nodes in a WAN or between nodes on the

same LAN.

https://searchnetworking.techtarget.com/definition/ICMP

THE INTERNET

The Internet has revolutionized many aspects of our daily lives. It has affected the way

we do business as well as the way we spend our leisure time. Count the ways you've

used the Internet recently. Perhaps you've sent electronic mail (e-mail) to a business

associate, paid a utility bill, read a newspaper from a distant city, or looked up a local

movie schedule-all by using the Internet. Or maybe you researched a medical topic,

booked a hotel reservation, chatted with a fellow Trekkie, or comparison-shopped for a

car. The Internet is a communication system that has brought a wealth of information

to our fingertips and organized it for our use.

A Brief History

A network is a group of connected communicating devices such as computers and

printers. An internet (note the lowercase letter i) is two or more networks that can

communicate with each other. The most notable internet is called the Internet

(uppercase letter I), a collaboration of more than hundreds of thousands of

interconnected networks. Private individuals as well as various organizations such as

government agencies, schools, research facilities, corporations, and libraries in more

than 100 countries use the Internet. Millions of people are users. Yet this extraordinary

communication system only came into being in 1969.

In the mid-1960s, mainframe computers in research organizations were

standalone devices. Computers from different manufacturers were unable to

communicate with one another. The Advanced Research Projects Agency

(ARPA) in the Department of Defense (DoD) was interested in finding a way to connect

computers so that the researchers they funded could share their findings, thereby

reducing costs and eliminating duplication of effort.

In 1967, at an Association for Computing Machinery (ACM) meeting, ARPA

presented its ideas for ARPANET, a small network of connected computers. The idea

was that each host computer (not necessarily from the same manufacturer) would be

attached to a specialized computer, called an inteiface message processor (IMP). The

IMPs, in tum, would be connected to one another. Each IMP had to be able to

communicate with other IMPs as well as with its own attached host. By 1969, ARPANET

was a reality. Four nodes, at the University of California at Los Angeles (UCLA), the

University of California at Santa Barbara (UCSB), Stanford Research Institute (SRI), and

the University of Utah, were connected via the IMPs to form a network. Software

called the Network Control Protocol (NCP) provided communication between the hosts.

In 1972, Vint Cerf and Bob Kahn, both of whom were part of the core ARPANET

group, collaborated on what they called the Internetting Projec1. Cerf and Kahn's

landmark 1973 paper outlined the protocols to achieve end- to-end delivery of packets.

This paper on Transmission Control Protocol (TCP) included concepts such as

encapsulation, the datagram, and the functions of a gateway. Shortly thereafter,

authorities made a decision to split TCP into two protocols: Transmission Control

Protocol (TCP) and Internetworking Protocol (lP). IP would handle datagram routing

while TCP would be responsible for higher-level functions such as segmentation,

reassembly, and error detection. The internetworking protocol became known as

TCPIIP.

The Internet Today

The Internet has come a long way since the 1960s. The Internet today is not a simple

hierarchical structure. It is made up of many wide- and local-area networks joined by

connecting devices and switching stations. It is difficult to give an accurate

representation of the Internet because it is continually changing-new networks are

being added, existing networks are adding addresses, and networks of defunct

companies are being removed. Today most end users who want Internet connection

use the services of Internet service providers (lSPs). There are international service

providers, national service providers, regional service providers, and local service

providers. The Internet today is run by private companies, not the government. Figure

1.13 shows a conceptual (not geographic) view of the Internet.

International Internet Service Providers:

At the top of the hierarchy are the international service providers that connect

nations together.

National Internet Service Providers:

The national Internet service providers are backbone networks created and

maintained by specialized companies. There are many national ISPs operating in North

America; some of the most well known are SprintLink, PSINet, UUNet Technology, AGIS,

and internet Mel. To provide connectivity between the end users, these backbone

networks are connected by complex switching stations (normally run by a third party)

called network access points (NAPs). Some national ISP networks are also connected to

one another by private switching stations called peering points. These normally

operate at a high data rate (up to 600 Mbps).

Regional Internet Service Providers:

Regional internet service providers or regional ISPs are smaller ISPs that are

connected to one or more national ISPs. They are at the third level of the hierarchy

with a smaller data rate. Local Internet Service Providers:

Local Internet service providers provide direct service to the end users. The local

ISPs can be connected to regional ISPs or directly to national ISPs. Most end users are

connected to the local ISPs. Note that in this sense, a local ISP can be a company that

just provides Internet services, a corporation with a network that supplies services to

its own employees, or a nonprofit organization, such as a college or a university, that

runs its own network. Each of these local ISPs can be connected to a regional or

national service provider.

UNIT- II

DATA LINK LAYER FUNCTIONS (SERVICES)

1. Providing services to the network layer:

1 Unacknowledged connectionless service.

Appropriate for low error rate and real-time traffic. Ex: Ethernet

2. Acknowledged connectionless service.

Useful in unreliable channels, WiFi. Ack/Timer/Resend

3. Acknowledged connection-oriented service.

Guarantee frames are received exactly once and in the right order. Appropriate over

long, unreliable links such as a satellite channel or a long- distance telephone circuit

2. Framing: Frames are the streams of bits received from the network layer into

manageable data units. This division of stream of bits is done by Data Link Layer.

3. Physical Addressing: The Data Link layer adds a header to the frame in order to

define physical address of the sender or receiver of the frame, if the frames are to

be distributed to different systems on the network.

4. Flow Control: A receiving node can receive the frames at a faster rate than it can

process the frame. Without flow control, the receiver's buffer can overflow, and

frames can get lost. To overcome this problem, the data link layer uses the flow

control to prevent the sending node on one side of the link from overwhelming the

receiving node on another side of the link. This prevents traffic jam at the receiver

side.

5. Error Control: Error control is achieved by adding a trailer at the end of the frame.

Duplication of frames are also prevented by using this mechanism. Data Link Layers

adds mechanism to prevent duplication of frames.

Error detection: Errors can be introduced by signal attenuation and noise. Data

Link Layer protocol provides a mechanism to detect one or more errors. This is

achieved by adding error detection bits in the frame and then receiving node can

perform an error check.

Error correction: Error correction is similar to the Error detection, except that

receiving node not only detects the errors but also determine where the errors have

occurred in the frame.

6. Access Control: Protocols of this layer determine which of the devices has control

over the link at any given time, when two or more devices are connected to the

same link.

7. Reliable delivery: Data Link Layer provides a reliable delivery service, i.e.,

transmits the network layer datagram without any error. A reliable delivery service

is accomplished with transmissions and acknowledgements. A data link layer

mainly provides the reliable delivery

service over the links as they have higher error rates and they can be corrected

locally, link at which an error occurs rather than forcing to retransmit the data.

8. Half-Duplex & Full-Duplex: In a Full-Duplex mode, both the nodes can transmit the

data at the same time. In a Half-Duplex mode, only one node can transmit the data

at the same time.

FRAMING:

To provide service to the network layer, the data link layer must use the service

provided to it by the physical layer. What the physical layer does is accept a raw bit

stream and attempt to deliver it to the destination. This bit stream is not guaranteed

to be error free. The number of bits received may be less than, equal to, or more than

the number of bits transmitted, and they may have different values. It is up to the

data link layer to detect and, if necessary, correct errors. The usual approach is for

the data link layer to break the bit stream up into discrete frames and compute the

checksum for each frame (framing). When a frame arrives at the destination, the

checksum is recomputed. If the newly computed checksum is different from the one

contained in the frame, the data link layer knows that an error has occurred and takes

steps to deal with it (e.g., discarding the bad frame and possibly also sending back an

error report).We will look at four framing methods:

1. Character count.

2. Flag bytes with byte stuffing.

3. Starting and ending flags, with bit stuffing.

4. Physical layer coding violations.

Character count method uses a field in the header to specify the number of characters

in the frame. When the data link layer at the destination sees the character count, it

knows how many characters follow and hence where the end of the frame is. This

technique is shown in Fig. (a) For four frames of sizes 5, 5, 8, and 8 characters,

respectively.

A character stream. (a) Without errors. (b) With one error

The trouble with this algorithm is that the count can be garbled by a transmission

error. For example, if the character count of 5 in the second frame of Fig. (b) becomes

a 7, the destination will get out of synchronization and will be unable to locate the

start of the next frame. Even if the checksum is incorrect so the destination knows

that the frame is bad, it still has no way of telling where the next frame starts.

Sending a frame back to the source asking for a retransmission does not help either,

since the destination does not know how many characters to skip over to get to the

start of the retransmission. For this reason, the character count method is rarely used

anymore.

Flag bytes with byte stuffing method gets around the problem of resynchronization

after an error by having each frame start and end with special bytes. In the past, the

starting and ending bytes were different, but in recent years most protocols have used

the same byte, called a flag byte, as both the starting and ending delimiter, as shown

in Fig. (a) as FLAG. In this way, if the receiver ever loses synchronization, it can just

search for the flag byte to find the end of the current frame. Two consecutive flag

bytes indicate the end of one frame and start of the next one.

(a) A frame delimited by flag bytes (b) Four examples of byte sequences

before and after byte stuffing

It may easily happen that the flag byte's bit pattern occurs in the data. This

situation will usually interfere with the framing. One way to solve this problem is to

have the sender's data link layer insert a special escape byte (ESC) just before each

''accidental'' flag byte in the data. The data link layer on the receiving end removes the

escape byte before the data are given to the network layer. This technique is called

byte stuffing or character stuffing.

Thus, a framing flag byte can be distinguished from one in the data by the absence or

presence of an escape byte before it.

What happens if an escape byte occurs in the middle of the data? The answer is

that, it too is stuffed with an escape byte. Thus, any single escape byte is part of an

escape sequence, whereas a doubled one indicates that a single escape occurred

naturally in the data. Some examples are shown in Fig. (b). In all cases, the byte

sequence delivered after de stuffing is exactly the same as the original byte sequence.
A major disadvantage of using this framing method is that it is closely tied to the

use of 8-bit characters. Not all character codes use 8-bit characters. For example

UNICODE uses 16-bit characters, so a new technique had to be developed to allow

arbitrary sized characters

Starting and ending flags, with bit stuffing allows data frames to contain an

arbitrary number of bits and allows character codes with an arbitrary number of bits per

character. It works like this. Each frame begins and ends with a special bit pattern,

01111110 (in fact, a flag byte). Whenever the sender's data link layer encounters five

consecutive 1s in the data, it automatically stuffs a 0 bit into the outgoing bit stream.

This bit stuffing is analogous to byte stuffing, in which an escape byte is stuffed into the

outgoing character stream before a flag byte in the data.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it

automatically de- stuffs (i.e., deletes) the 0 bit. Just as byte stuffing is

completely transparent to the network layer in both computers, so is bit stuffing. If

the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010

but stored in the receiver's memory as 01111110.

Fig:Bit stuffing. (a) The original data. (b) The data as they appear on the line.

(c) The data as they are stored in the receiver's memory after destuffing.
With bit stuffing, the boundary between two frames can be unambiguously recognized

by the flag pattern. Thus, if the receiver loses track of where it is, all it has to do is

scan the input for flag sequences, since they can only occur at frame boundaries and

never within the data.

Physical layer coding violations method of framing is only applicable to networks in

which the encoding on the physical medium contains some redundancy. For example,

some LANs encode 1 bit of data by using 2 physical bits. Normally, a 1 bit is a high-low

pair and a 0 bit is a low-high pair. The scheme means that every data bit has a

transition in the middle, making it easy for the receiver to locate the bit boundaries.

The combinations high-

high and low-low are not used for data but are used for delimiting frames in some

protocols.

As a final note on framing, many data link protocols use combination of a character

count with one of the other methods for extra safety. When a frame arrives, the count

field is used to locate the end of the frame. Only if the appropriate delimiter is present

at that position and the checksum is correct is the frame accepted as valid. Otherwise,

the input stream is scanned for the next delimiter

ELEMENTARY DATA LINK PROTOCOLS

Simplest Protocol

It is very simple. The sender sends a sequence of frames without even thinking about the

receiver. Data are transmitted in one direction only. Both sender & receiver always ready.

Processing time can be ignored. Infinite buffer space is available. And best of all, the

communication channel between the data link layers never damages or loses frames. This

thoroughly unrealistic protocol, which we will nickname ‘‘Utopia,’’ .The utopia protocol

is unrealistic because it does not handle either flow control or error correction

Stop-and-wait Protocol

It is still very simple. The sender sends one frame and waits for feedback from the

receiver. When the ACK arrives, the sender sends the next frame

It is Stop-and-Wait Protocol because the sender sends one frame, stops until it receives

confirmation from the receiver (okay to go ahead), and then sends the next frame. We

still have unidirectional communication for data frames, but auxiliary ACK frames

(simple tokens of acknowledgment) travel from the other direction. We add flow

control to our previous protocol.

NOISY CHANNELS

Although the Stop-and-Wait Protocol gives us an idea of how to add flow control to its

predecessor, noiseless channels are nonexistent. We can ignore the error (as we

sometimes do), or we need to add error control to our protocols. We discuss three

protocols in this section that use error control.

Sliding Window Protocols:

1 Stop-and-Wait Automatic Repeat

Request

2 Go-Back-N Automatic Repeat

Request

3 Selective Repeat Automatic Repeat Request

1 Stop-and-Wait Automatic Repeat Request

To detect and correct corrupted frames, we need to add redundancy bits to our

data frame. When the frame arrives at the receiver site, it is checked and if it is

corrupted, it is silently discarded. The detection of errors in this protocol is manifested

by the silence of the receiver.

Lost frames are more difficult to handle than corrupted ones. In our previous

protocols, there was no way to identify a frame. The received frame could be the

correct one, or a duplicate, or a frame out of order. The solution is to number the

frames. When the receiver receives a data frame that is out of order, this means that

frames were either lost or duplicated

The lost frames need to be resent in this protocol. If the receiver does not respond

when there is an error, how can the sender know which frame to resend? To remedy this

problem, the sender keeps a copy of the sent frame. At the same time, it starts a timer.

If the timer expires and there is no ACK for the sent frame, the frame is resent, the

copy is held, and the timer is restarted. Since the protocol uses the stop-and-wait

mechanism, there is only one specific frame that needs an ACK

Error correction in Stop-and-Wait ARQ is done by keeping a copy of the sent frame and

retransmitting of the frame when the timer expires

In Stop-and-Wait ARQ, we use sequence numbers to number the frames. The

sequence numbers are based on modulo-2 arithmetic.

In Stop-and-Wait ARQ, the acknowledgment number always announces in modulo-2

arithmetic the sequence number of the next frame expected.

Bandwidth Delay Product:

Assume that, in a Stop-and-Wait ARQ system, the bandwidth of the line is 1 Mbps, and 1

bit takes 20 ms to make a round trip. What is the bandwidth-delay product? If the

system data frames are 1000 bits in length, what is the utilization percentage of the

link?

The link utilization is only 1000/20,000, or 5 percent. For this reason, for a link with a

high bandwidth or long delay, the use of Stop-and-Wait ARQ wastes the capacity of the

link.

2. Go-Back-N Automatic Repeat Request

To improve the efficiency of transmission (filling the pipe), multiple frames must

be in transition while waiting for acknowledgment. In other words, we need to let

more than one frame be outstanding to keep the channel busy while the sender is

waiting for acknowledgment.

The first is called Go-Back-N Automatic Repeat. In this protocol we can send

several frames before receiving acknowledgments; we keep a copy of these frames until

the acknowledgments arrive.

In the Go-Back-N Protocol, the sequence numbers are modulo 2
m
, where m is the

size of the sequence number field in bits. The sequence numbers range from 0 to 2

power m- 1. For example, if m is 4, the only sequence numbers are 0 through 15

inclusive.

The sender window at any time divides the possible sequence numbers into four

regions.

The first region, from the far left to the left wall of the window, defines the

sequence numbers belonging to frames that are already acknowledged. The sender does

not worry about these frames and keeps no copies of them.

The second region, colored in Figure (a), defines the range of sequence numbers

belonging to the frames that are sent and have an unknown status. The sender needs to

wait to find out if these frames have been received or were lost. We call these

outstanding frames.

The third range, white in the figure, defines the range of sequence numbers for

frames that can be sent; however, the corresponding data packets have not yet been

received from the network layer.

Finally, the fourth region defines sequence numbers that cannot be used until the

window slides

The send window is an abstract concept defining an imaginary box of size 2
m
− 1

with three variables: Sf, Sn, and Ssize. The variable Sf defines the sequence number of

the first (oldest) outstanding frame. The variable Sn holds the sequence number that

will be assigned to the next frame to be sent. Finally, the variable Ssize defines the size

of the window.

Figure (b) shows how a send window can slide one or more slots to the right when

an acknowledgment arrives from the other end. The acknowledgments in this protocol

are cumulative, meaning that more than one frame can be acknowledged by an ACK

frame. In Figure, frames 0, I, and 2 are

acknowledged, so the window has slide to the right three slots. Note that the value of

Sf is 3 because frame 3 is now the first outstanding frame.The send window can slide

one or more slots when a valid acknowledgment arrives.

Receiver window: variable Rn (receive window, next frame expected) .

The sequence numbers to the left of the window belong to the frames already received

and acknowledged; the sequence numbers to the right of this window define the frames

that cannot be received. Any received frame with a sequence number in these two

regions is discarded. Only a frame with a sequence number matching the value of Rn is

accepted and acknowledged. The receive window also slides, but only one slot at a

time. When a correct frame is received (and a frame is received only one at a time),

the window slides.(see below figure for receiving window)

The receive window is an abstract concept defining an imaginary box of size 1 with one

single variable Rn. The window slides when a correct frame has arrived; sliding occurs

one slot at a time

Fig: Receiver window (before sliding (a), After sliding (b))

Timers

Although there can be a timer for each frame that is sent, in our protocol we use only

one. The reason is that the timer for the first outstanding frame always expires first;

we send all outstanding frames when this timer expires.

Acknowledgment

The receiver sends a positive acknowledgment if a frame has arrived safe and sound and

in order. If a frame is damaged or is received out of order, the receiver is silent and will

discard all subsequent frames until it receives the one it is expecting. The silence of the

receiver causes the timer of the unacknowledged frame at the sender side to expire.

This, in turn, causes the sender to go back and resend all frames, beginning with the

one with the expired timer. The receiver does not have to acknowledge each frame

received. It can send one cumulative acknowledgment for several frames.

Resending a Frame

When the timer expires, the sender resends all outstanding frames. For example,

suppose the sender has already sent frame 6, but the timer for frame 3 expires. This

means that frame 3 has not been acknowledged; the sender goes back and sends frames

3,4,5, and 6 again. That is why the protocol is called Go-Back-N ARQ.

Below figure is an example(if ack lost) of a case where the forward channel is reliable,

but the reverse is not. No data frames are lost, but some ACKs are delayed and one is

lost. The example also shows how cumulative acknowledgments can help if

acknowledgments are delayed or lost

Below figure is an example(if frame lost)

Stop-and-Wait ARQ is a special case of Go-Back-N ARQ in which the size of the send

window is 1.

3 Selective Repeat Automatic Repeat Request

In Go-Back-N ARQ, The receiver keeps track of only one variable, and there is no need

to buffer out-of- order frames; they are simply discarded. However, this protocol is very

inefficient for a noisy link.

In a noisy link a frame has a higher probability of damage, which means the resending

of multiple frames. This resending uses up the bandwidth and slows down the

transmission.

For noisy links, there is another mechanism that does not resend N frames when just

one frame is damaged; only the damaged frame is resent. This mechanism is called

Selective Repeat ARQ.

It is more efficient for noisy links, but the processing at the receiver is more complex.

Sender Window (explain go-back N sender window concept (before & after sliding.) The

only difference in sender window between Go-back N and Selective Repeat is Window

size)

Receiver window

The receiver window in Selective Repeat is totally different from the one in Go Back-N.

First, the size of the receive window is the same as the size of the send window (2
m-1

).

The Selective Repeat Protocol allows as many frames as the size of the receiver

window to arrive out of order and be kept until there is a set of in- order frames to be

delivered to the network layer. Because the sizes of the send window and receive

window are the same, all the frames in the send frame can arrive out of order and be

stored until they can be delivered. However the receiver never delivers packets out of

order to the network layer. Above Figure shows the receive window. Those slots inside

the window that are colored define frames that have arrived out of order and are

waiting for their neighbors to arrive before delivery to the network layer.

In Selective Repeat ARQ, the size of the sender and receiver window must be at most

one-half of 2
m

Delivery of Data in Selective Repeat ARQ:

Flow Diagram

Differences between Go-Back N & Selective Repeat

One main difference is the number of timers. Here, each frame sent or resent

needs a timer, which means that the timers need to be numbered (0, 1,2, and 3). The

timer for frame 0 starts at the first request, but stops when the ACK for this frame

arrives.

There are two conditions for the delivery of frames to the network layer: First, a

set of consecutive frames must have arrived. Second, the set starts from the beginning

of the window. After the first arrival, there was only one frame and it started from the

beginning of the window. After the last arrival, there are three frames and the first one

starts from the beginning of the window.

Another important point is that a NAK is sent.

The next point is about the ACKs. Notice that only two ACKs are sent here. The

first one acknowledges only the first frame; the second one acknowledges three frames.

In Selective Repeat, ACKs are sent when data are delivered to the network layer. If the

data belonging to n frames are delivered in one shot, only one ACK is sent for all of

them.

Piggybacking

A technique called piggybacking is used to improve the efficiency of the bidirectional

protocols. When a frame is carrying data from A to B, it can also carry control

information about arrived (or lost) frames from B; when a frame is carrying data from B

to A, it can also carry control information about the arrived (or lost) frames from A.

RANDOM ACCESS PROTOCOLS

We can consider the data link layer as two sub layers. The upper sub layer is responsible

for data link control, and the lower sub layer is responsible for resolving access to the

shared media

The upper sub layer that is responsible for flow and error control is called the logical

link control (LLC) layer; the lower sub layer that is mostly responsible for multiple

access resolution is called the media access control (MAC) layer. When nodes or stations

are connected and use a common link, called a multipoint or broadcast link, we need a

multiple-access protocol to coordinate access to the link.

Taxonomy of multiple-access protocols

RANDOM ACCESS

In random access or contention methods, no station is superior to another station and

none is assigned the control over another.

Two features give this method its name. First, there is no scheduled time for a

station to transmit. Transmission is random among the stations. That is why these

methods are called random access. Second, no rules specify which station should send

next. Stations compete with one another to access the medium. That is why these

methods are also called contention methods.

ALOHA

1 Pure ALOHA

The original ALOHA protocol is called pure ALOHA. This is a simple, but elegant

protocol. The idea is that each station sends a frame whenever it has a frame to send.

However, since there is only one channel to share, there is the possibility of collision

between frames from different stations. Below Figure shows an example of frame

collisions in pure ALOHA.

Frames in a pure ALOHA network

In pure ALOHA, the stations transmit frames whenever they have data to send.

​ When two or more stations transmit simultaneously, there is collision and the frames are

destroyed.

​ In pure ALOHA, whenever any station transmits a frame, it expects the

acknowledgement from the receiver.

​ If acknowledgement is not received within specified time, the station assumes that the

frame (or acknowledgement) has been destroyed.

​ If the frame is destroyed because of collision the station waits for a random

amount of time and sends it again. This waiting time must be random otherwise same

frames will collide again and again.

​ Therefore pure ALOHA dictates that when time-out period passes, each station

must wait for a random amount of time before resending its frame. This randomness

will help avoid more collisions.

Vulnerable time Let us find the length of time, the vulnerable time, in which there

is a possibility of collision. We assume that the stations send fixed- length frames with

each frame taking Tfr S to send. Below Figure shows the vulnerable time for station A.

Station A sends a frame at time t. Now imagine station B has already sent a frame

between t - Tfr and t. This leads to a collision between the frames from station A and

station B. The end of B's frame collides with the beginning of A's frame. On the other

hand, suppose that station C sends a frame between t and t + Tfr . Here, there is a

collision between frames from station A and station C. The beginning of C's frame

collides with the end of A's frame

Looking at Figure, we see that the vulnerable time, during which a collision may occur

in pure ALOHA, is 2 times the frame transmission time. Pure ALOHA vulnerable time =

2 x Tfr

Procedure for pure ALOHA protocol

Example

A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What is

the requirement to make this frame collision-free?

Solution

Average frame transmission time Tfr is 200 bits/200 kbps or 1 ms. The vulnerable time

is 2 x 1 ms =2 ms. This means no station should send later than 1 ms before this station

starts transmission and no station should start sending during the one I-ms period that

this station is sending.

The throughput for pure ALOHA is S = G × e −2G . The maximum throughput Smax =

0.184 when G= (1/2).

PROBLEM

A pure ALOHA network transmits 200-bit frames on a shared channel of 200 kbps. What

is the throughput if the system (all stations together) produces a. 1000 frames per

second b. 500 frames per second c. 250 frames per second.

The frame transmission time is 200/200 kbps or 1 ms.

a. If the system creates 1000 frames per second, this is 1 frame per

millisecond. The load is 1. In this case S = G× e
−2 G

or S = 0.135 (13.5 percent). This

means that the throughput is 1000 × 0.135 = 135 frames. Only 135 frames out of 1000

will probably survive.

b. If the system creates 500 frames per second, this is (1/2) frame per millisecond.

The load is (1/2). In this case S = G × e
−2G

or S = 0.184 (18.4 percent). This means that

the throughput is 500 ×

0.184 = 92 and that only 92 frames out of 500 will probably survive. Note that this is the

maximum throughput case, percentage wise.

c. If the system creates 250 frames per second, this is (1/4) frame per

millisecond. The load is (1/4). In this case S = G × e −
2G
or S = 0.152 (15.2 percent). This

means that the throughput is 250 × 0.152 = 38. Only 38 frames out of 250 will probably

survive.

2 Slotted ALOHA

Pure ALOHA has a vulnerable time of 2 x Tfr . This is so because there is no rule that

defines when the station can send. A station may send soon after another station has

started or soon before another station has finished. Slotted ALOHA was invented to

improve the efficiency of pure ALOHA.

In slotted ALOHA we divide the time into slots of Tfr s and force the station to send only

at the beginning of the time slot. Figure 3 shows an example of frame collisions in

slotted ALOHA

FIG:3

Because a station is allowed to send only at the beginning of the synchronized time

slot, if a station misses this moment, it must wait until the beginning of the next time

slot. This means that the station which started at the beginning of this slot has already

finished sending its frame. Of course, there is still the possibility of collision if two

stations try to send at the beginning of the same time slot. However, the vulnerable

time is now reduced to one-half, equal to Tfr Figure 4 shows the situation

Below fig shows that the vulnerable time for slotted ALOHA is one-half that of pure

ALOHA. Slotted ALOHA vulnerable time = Tfr

The throughput for slotted ALOHA is S = G × e−G . The maximum throughput Smax =

0.368 when G = 1.

A slotted ALOHA network transmits 200-bit frames using a shared channel with a 200-

Kbps bandwidth. Find the throughput if the system (all stations together) produces

a. 1000 frames per second b. 500 frames per second c. 250 frames per

second

Solution

This situation is similar to the previous exercise except that the network is using

slotted ALOHA instead of pure ALOHA. The frame transmission time is 200/200 kbps or

1 ms.

a. In this case G is 1. So S =G x e-G or S =0.368 (36.8 percent). This means that the

throughput is 1000 x 0.0368 =368 frames. Only 368 out of 1000 frames will probably

survive. Note that this is the maximum throughput case, percentagewise.

b. Here G is 1/2 In this case S =G x e-G or S =0.303 (30.3 percent). This means that

the throughput is 500 x 0.0303 =151. Only 151 frames out of 500 will probably

survive.

c. Now G is 1/4. In this case S =G x e-G or S =0.195 (19.5 percent). This means

that the throughput is 250 x 0.195 = 49. Only 49 frames out of 250 will probably

survive

Comparison between Pure Aloha & Slotted Aloha

Carrier Sense Multiple Access (CSMA)

To minimize the chance of collision and, therefore, increase the performance, the

CSMA method was developed. The chance of collision can be reduced if a station senses

the medium before trying to use it. Carrier sense multiple access (CSMA) requires that

each station first listen to the medium (or check the state of the medium) before

sending. In other words, CSMA is based on the principle "sense before transmit" or "listen

before talk."

CSMA can reduce the possibility of collision, but it cannot eliminate it. The reason

for this is shown in below Figure. Stations are connected to a shared channel (usually a

dedicated medium).

The possibility of collision still exists because of propagation delay; station may sense

the medium and find it idle, only because the first bit sent by another station has not

yet been received.

At time tI' station B senses the medium and finds it idle, so it sends a frame. At

time t2 (t2> tI)' station C senses the medium and finds it idle because, at this time, the

first bits from station B

have not reached station C. Station C also sends a frame. The two signals collide and

both frames are destroyed.

Space/time model of the collision in CSMA

Vulnerable Time

The vulnerable time for CSMA is the propagation time Tp . This is the time needed for a

signal to propagate from one end of the medium to the other. When a station sends a

frame, and any other station tries to send a frame during this time, a collision will

result. But if the first bit of the frame reaches the end of the medium, every station will

already have heard the bit and will refrain from sending

Vulnerable time in CSMA

Persistence Methods

What should a station do if the channel is busy? What should a station do if the channel

is idle? Three methods have been devised to answer these questions: the 1-persistent

method, the non-persistent method, and the p-persistent method

1-Persistent: In this method, after the station finds the line idle, it sends its frame

immediately (with probability 1). This method has the highest chance of collision

because two or more stations may find the line idle and send their frames immediately.

Non-persistent: a station that has a frame to send senses the line. If the line is idle,

it sends immediately. If the line is not idle, it waits a random amount of time and then

senses the line again. This approach reduces the chance of collision because it is

unlikely that two or more stations will wait the same amount of time and retry to send

simultaneously. However, this method reduces the efficiency of the network because

the medium remains idle when there may be stations with frames to send.

p-Persistent: This is used if the channel has time slots with a slot duration equal to or

greater than the maximum propagation time. The p-persistent approach combines the

advantages of the other two strategies. It reduces the chance of collision and improves

efficiency.

In this method, after the station finds the line idle it follows these steps:

1. With probability p, the station sends its frame.

2. With probability q = 1 - p, the station waits for the beginning of the next time slot

and checks the line again.

a. If the line is idle, it goes to step 1.

b. If the line is busy, it acts as though a collision has occurred and uses the backoff

procedure.

a.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

The CSMA method does not specify the procedure following a collision. Carrier

sense multiple access with collision detection (CSMA/CD) augments the algorithm to

handle the collision.

In this method, a station monitors the medium after it sends a frame to see if the

transmission was successful. If so, the station is finished. If, however, there is a

collision, the frame is sent again.

To better understand CSMA/CD, let us look at the first bits transmitted by the two

stations involved in the collision. Although each station continues to send bits in the

frame until it detects the collision, we show what happens as the first bits collide. In

below Figure, stations A and C are involved in the collision.

Collision of the first bit in CSMA/CD

At time t 1, station A has executed its persistence procedure and starts sending the bits

of its frame. At time t2, station C has not yet sensed the first bit sent by A. Station C

executes its persistence procedure and starts sending the bits in its frame, which

propagate both to the left and to the right. The collision occurs sometime after time

t2.Station C detects a collision at time t3 when it receives the first bit of A's frame.

Station C immediately (or after a short time, but we assume immediately) aborts

transmission.

Station A detects collision at time t4 when it receives the first bit of C's frame; it also

immediately aborts transmission. Looking at the figure, we see that A

transmits for the duration t4 - tl; C transmits for the duration t3 - t2.

Minimum Frame Size

For CSMAlCD to work, we need a restriction on the frame size. Before sending the last

bit of the frame, the sending station must detect a collision, if any, and abort the

transmission. This is so because the station, once the entire frame is sent, does not keep

a copy of the frame and does not monitor the line for collision detection. Therefore, the

frame transmission time Tfr must be at least two times the maximum propagation time

Tp. To understand the reason, let us think about the worst-case scenario. If the two

stations involved in a collision are the maximum distance apart, the signal from the first

takes time Tp to reach the second, and the effect of the collision takes another time Tp

to reach the first. So the requirement is that the first station must still be transmitting

after 2Tp .

Collision and abortion in CSMA/CD

Flow diagram for the CSMA/CD

PROBLEM

A network using CSMA/CD has a bandwidth of 10 Mbps. If the maximum

propagation time (including the delays in the devices and ignoring the time needed to

send a jamming signal, as we see later) is 25.6 μs, what is the minimum size of the

frame?

SOL

The frame transmission time is Tfr = 2 × Tp = 51.2 μs. This means, in the worst case, a

station needs to transmit for a period of 51.2 μs to detect the collision. The minimum

size of the frame is 10 Mbps × 51.2 μs = 512 bits or 64 bytes. This is actually the

minimum size of the frame for Standard Ethernet.

DIFFERENCES BETWEEN ALOHA & CSMA/CD

The first difference is the addition of the persistence process. We need to sense

the channel before we start sending the frame by using one of the persistence processes

The second difference is the frame transmission. In ALOHA, we first transmit the

entire frame and then wait for an acknowledgment. In CSMA/CD, transmission and

collision detection is a continuous process. We do not send the entire frame and then

look for a collision. The station transmits and receives continuously and simultaneously

The third difference is the sending of a short jamming signal that enforces the

collision in case other stations have not yet sensed the collision.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

We need to avoid collisions on wireless networks because they cannot be detected.

Carrier sense multiple access with collision avoidance (CSMAlCA) was invented for

wirelesss network. Collisions are avoided through the use of CSMA/CA's three strategies:

the inter frame space, the contention window, and

acknowledgments, as shown in Figure

Timing in CSMA/CA

Inter frame Space (IFS)

First, collisions are avoided by deferring transmission even if the channel is found

idle. When an idle channel is found, the station does not send immediately. It waits for

a period of time called the inter frame space or IFS.

Even though the channel may appear idle when it is sensed, a distant station may

have already started transmitting. The distant station's signal has not yet reached this

station. The IFS time allows the front of the transmitted signal by the distant station to

reach this station. If after the IFS time the channel is still idle, the station can send, but

it still needs to wait a time equal to the contention time. The IFS variable can also be

used to prioritize stations or frame types. For example, a station that is assigned

shorter IFS has a higher priority.

In CSMA/CA, the IFS can also be used to define the priority of a station or a frame.

Contention Window

The contention window is an amount of time divided into slots. A station that is

ready to send chooses a random number of slots as its wait time. The number of slots in

the window changes according to the binary exponential back-off strategy. This means

that it is set to one slot the first time and then doubles each time the station cannot

detect an idle channel after the IFS time. This is very similar to the p-persistent method

except that a random outcome defines the number of slots taken by the waiting station.

One interesting point about the contention window is that the station needs to

sense the channel after each time slot. However, if the station finds the channel busy, it

does not restart the process; it just stops the timer and restarts it when the channel is

sensed as idle. This gives priority to the station with the longest waiting time.

In CSMA/CA, if the station finds the channel busy, it does not restart the timer of

the contention window; it stops the timer and restarts it when the channel becomes

idle.

Acknowledgment

With all these precautions, there still may be a collision resulting in destroyed data.

In addition, the data may be corrupted during the transmission. The positive

acknowledgment and the time-out timer can help guarantee that the receiver has

received the frame.

This is the CSMA protocol with collision avoidance.

● The station ready to transmit, senses the line by using one of the persistent

strategies.

● As soon as it finds the line to be idle, the station waits for an IFS (Inter frame

space) amount of time.

● If then waits for some random time and sends the frame.

● After sending the frame, it sets a timer and waits for the acknowledgement from the

receiver.

● If the acknowledgement is received before expiry of the timer, then the

transmission is successful.

● But if the transmitting station does not receive the expected

acknowledgement before the timer expiry then it increments the back off

parameter, waits for the back off time and re senses the line

Controlled Access Protocols

In controlled access, the stations seek information from one another to find which

station has the right to send. It allows only one node to send at a time, to avoid

collision of messages on shared medium. The three

controlled-access methods are:

1 Reservation 2 Polling 3 Token Passing

Reservation

● In the reservation method, a station needs to make a reservation before sending

data.

● The time line has two kinds of periods:

1. Reservation interval of fixed time length

2. Data transmission period of variable frames.

● If there are M stations, the reservation interval is divided into M slots, and each

station has one slot.

● Suppose if station 1 has a frame to send, it transmits 1 bit during the slot

1. No other station is allowed to transmit during this slot.

● In general, i
th
station may announce that it has a frame to send by inserting a 1

bit into i
th

slot. After all N slots have been checked, each station knows which

stations wish to transmit.

● The stations which have reserved their slots transfer their frames in that order.

● After data transmission period, next reservation interval begins.

● Since everyone agrees on who goes next, there will never be any collisions.

The following figure shows a situation with five stations and a five slot reservation

frame. In the first interval, only stations 1, 3, and 4 have made reservations. In the

second interval, only station 1 has made a reservation.

Polling

​ Polling process is similar to the roll-call performed in class. Just like the

teacher, a controller sends a message to each node in turn.

​ In this, one acts as a primary station(controller) and the others are secondary

stations. All data exchanges must be made through the controller.

​ The message sent by the controller contains the address of the node being

selected for granting access.

​ Although all nodes receive the message but the addressed one responds to it and

sends data, if any. If there is no data, usually a “poll reject”(NAK) message is sent back.

​ Problems include high overhead of the polling messages and high dependence on

the reliability of the controller.

Token Passing

​ In token passing scheme, the stations are connected logically to each other in form

of ring and access of stations is governed by tokens.

​ A token is a special bit pattern or a small message, which circulate from one

station to the next in the some predefined order.

​ In Token ring, token is passed from one station to another adjacent station in

the ring whereas incase of Token bus, each station uses the bus to

send the token to the next station in some predefined order.

​ In both cases, token represents permission to send. If a station has a frame

queued for transmission when it receives the token, it can send that frame before it

passes the token to the next station. If it has no queued frame, it passes the token

simply.

​ After sending a frame, each station must wait for all N stations (including itself) to

send the token to their neighbors and the other N – 1 stations to send a frame, if they

have one.

​ There exists problems like duplication of token or token is lost or insertion of new

station, removal of a station, which need be tackled for correct and reliable operation of

this scheme.

Error Detection

Error

A condition when the receiver’s information does not matches with the sender’s

information. During transmission, digital signals suffer from noise that can introduce

errors in the binary bits travelling from sender to receiver. That means a 0 bit may

change to 1 or a 1 bit may change to 0. Error Detecting Codes (Implemented

either at Data link layer or Transport Layer of OSI

Model) Whenever a message is transmitted, it may get scrambled by noise or data may

get corrupted. To avoid this, we use error-detecting codes which are additional data

added to a given digital message to help us detect if any error has occurred during

transmission of the message.

Basic approach used for error detection is the use of redundancy bits, where

additional bits are added to facilitate detection of errors. Some popular techniques for

error detection are:

1. Simple Parity check

2. Two-dimensional Parity check

3. Checksum

4. Cyclic redundancy check

Simple Parity check

Blocks of data from the source are subjected to a check bit or parity bit generator form,

where a parity of : 1 is added to the block if it contains odd number of 1’s, and

0 is added if it contains even number of 1’s

This scheme makes the total number of 1’s even, that is why it is called even parity

checking.

Two-dimensional Parity check

Parity check bits are calculated for each row, which is equivalent to a simple parity

check bit. Parity check bits are also calculated for all columns, then both are sent along

with the data. At the receiving end these are compared with the parity bits calculated

on the received data.

Checksum

● In checksum error detection scheme, the data is divided into k segments each of m

bits.

● In the sender’s end the segments are added using 1’s complement

arithmetic to get the sum. The sum is complemented to get the checksum.

● The checksum segment is sent along with the data segments.

● At the receiver’s end, all received segments are added using 1’s complement

arithmetic to get the sum. The sum is complemented.

● If the result is zero, the received data is accepted; otherwise discarded.

Cyclic redundancy check (CRC)

● Unlike checksum scheme, which is based on addition, CRC is based on binary division.

● In CRC, a sequence of redundant bits, called cyclic redundancy check bits,

are appended to the end of data unit so that the resulting data unit becomes exactly

divisible by a second, predetermined binary number.

● At the destination, the incoming data unit is divided by the same number. If

at this step there is no remainder, the data unit is assumed to be correct and is

therefore accepted.

● A remainder indicates that the data unit has been damaged in transit and

therefore must be rejected.

Error Correction

Error Correction codes are used to detect and correct the errors when data is transmitted

from the sender to the receiver.

Error Correction can be handled in two ways:

Backward error correction: Once the error is discovered, the receiver requests the sender

to retransmit the entire data unit.

Forward error correction: In this case, the receiver uses the error-correcting

code which automatically corrects the errors.

A single additional bit can detect the error, but cannot correct it.

For correcting the errors, one has to know the exact position of the error. For example, If

we want to calculate a single-bit error, the error correction code will determine which

one of seven bits is in error. To achieve this, we have to add some additional redundant

bits.

Suppose r is the number of redundant bits and d is the total number of the data bits. The

number of redundant bits r can be calculated by using the formula:

2
r
>=d+r+1

The value of r is calculated by using the above formula. For example, if the value of d is

4, then the possible smallest value that satisfies the above relation would be 3.

To determine the position of the bit which is in error, a technique developed by

R.W Hamming is Hamming code which can be applied to any length of the data unit and

uses the relationship between data units and redundant units.

Hamming Code

Parity bits: The bit which is appended to the original data of binary bits so that the total

number of 1s is even or odd.

Even parity: To check for even parity, if the total number of 1s is even, then the

value of the parity bit is 0. If the total number of 1s occurrences is odd, then the value of

the parity bit is 1.

Odd Parity: To check for odd parity, if the total number of 1s is even, then the

value of parity bit is 1. If the total number of 1s is odd, then the value of parity bit is 0.

Algorithm of Hamming code:

An information of 'd' bits are added to the redundant bits 'r' to form d+r. The

location of each of the (d+r) digits is assigned a decimal value.

The 'r' bits are placed in the positions 1,2, 2
k-1

At the receiving end, the parity bits are recalculated. The decimal value of the parity bits

determines the position of an error.

Relationship b/w Error position & binary number.

Let's understand the concept of Hamming code through an example: Suppose the

original data is 1010 which is to be sent.

Total number of data bits 'd' = 4

Number of redundant bits r : 2
r
>= d+r+1

2
r
>= 4+r+1

Therefore, the value of r is 3 that satisfies the above relation. Total

number of bits = d+r = 4+3 = 7;

Determining the position of the redundant bits

The number of redundant bits is 3. The three bits are represented by r1, r2, r4. The

position of the redundant bits is calculated with corresponds to the raised power of 2.

Therefore, their corresponding positions are 1, 2
1
, 2

2
.

The position of r1 = 1, The position of r2 = 2 , The position of r4 = 4

Representation of Data on the addition of parity bits:

Determining the Parity bits

Determining the r1 bit: The r1 bit is calculated by performing a parity check on the bit

positions whose binary representation includes 1 in the first position.

We observe from the above figure that the bit position that includes 1 in the first

position are 1, 3, 5, 7. Now, we perform the even-parity check at these bit positions. The

total number of 1 at these bit positions corresponding to r1 is even, therefore, the value

of the r1 bit is 0.

Determining r2 bit: The r2 bit is calculated by performing a parity check on the bit

positions whose binary representation includes 1 in the second position

.

We observe from the above figure that the bit positions that includes 1 in the second

position are 2, 3, 6, 7. Now, we perform the even-parity check at these

bit positions. The total number of 1 at these bit positions corresponding to r2 is odd,

therefore, the value of the r2 bit is 1.

Determining r4 bit: The r4 bit is calculated by performing a parity check on the bit

positions whose binary representation includes 1 in the third position.

We observe from the above figure that the bit positions that includes 1 in the third

position are 4, 5, 6, 7. Now, we perform the even-parity check at these bit positions. The

total number of 1 at these bit positions corresponding to r4 is even, therefore, the value

of the r4 bit is 0.

Data transferred is given below:

Suppose the 4th bit is changed from 0 to 1 at the receiving end, then parity bits are

recalculated.

R1 bit

The bit positions of the r1 bit are 1,3,5,7

We observe from the above figure that the binary representation of r1 is 1100. Now, we

perform the even-parity check, the total number of 1s appearing in the r1 bit is an even

number. Therefore, the value of r1 is 0.

R2 bit

The bit positions of r2 bit are 2,3,6,7.

We observe from the above figure that the binary representation of r2 is 1001. Now, we

perform the even-parity check, the total number of 1s appearing in the r2 bit is an even

number. Therefore, the value of r2 is 0.

R4 bit

The bit positions of r4 bit are 4,5,6,7.

We observe from the above figure that the binary representation of r4 is 1011. Now, we

perform the even-parity check, the total number of 1s appearing in the r4 bit is an odd

number. Therefore, the value of r4 is 1.

The binary representation of redundant bits, i.e., r4r2r1 is 100, and its corresponding

decimal value is 4. Therefore, the error occurs in a 4th bit position. The bit value must

be changed from 1 to 0 to correct the error.

Wired LANs: Ethernet

In 1985, the Computer Society of the IEEE started a project, called Project 802, to set

standards to enable intercommunication among equipment from a variety of

manufacturers. Project 802 is a way of specifying functions of the physical layer and

the data link layer of major LAN protocols.

The relationship of the 802 Standard to the traditional OSI model is shown in below

Figure. The IEEE has subdivided the data link layer into two sub layers: logical link

control (LLC) and media access control).

IEEE has also created several physical layer standards for different LAN protocols

IEEE standard for LANs

STANDARD ETHERNET

The original Ethernet was created in 1976 at Xerox’s Palo Alto Research Center (PARC).

Since then, it has gone through four generations.

Standard Ethernet (l0 Mbps), Fast Ethernet (100 Mbps), Gigabit Ethernet (l Gbps), and

Ten-Gigabit Ethernet (l0 Gbps),

We briefly discuss the Standard (or traditional) Ethernet in this section

Ethernet evolution through four generations

MAC Sublayer

In Standard Ethernet, the MAC sublayer governs the operation of the access method. It

also frames data received from the upper layer and passes them to the physical layer.

Frame Format

The Ethernet frame contains seven fields: preamble, SFD, DA, SA, length or type of

protocol data unit (PDU), upper-layer data, and the CRC. Ethernet does not provide any

mechanism for acknowledging received frames, making it what is known as an

unreliable medium. Acknowledgments must be implemented at the higher layers. The

format of the MAC frame is shown in below figure

802.3 MAC frame

Preamble. The first field of the 802.3 frame contains 7 bytes (56 bits) of alternating 0s

and 1s that alerts the receiving system to the coming frame and enables it to

synchronize its input timing. The pattern provides only an alert and a timing pulse. The

56-bit pattern allows the stations to miss some bits at the beginning of the frame. The

preamble is actually added at the physical layer and is not (formally) part of the frame.

Start frame delimiter (SFD). The second field (l byte: 10101011) signals the beginning of

the frame. The SFD warns the station or stations that this is the last chance for

synchronization. The last 2 bits is 11 and alerts the receiver that the next field is the

destination address.

Destination address (DA). The DA field is 6 bytes and contains the physical address of

the destination station or stations to receive the packet.

Source address (SA). The SA field is also 6 bytes and contains the physical address of the

sender of the packet.

Length or type. This field is defined as a type field or length field. The original Ethernet

used this field as the type field to define the upper-layer protocol using the MAC frame.

The IEEE standard used it as the length field to define the number of bytes in the data

field. Both uses are common today.

Data. This field carries data encapsulated from the upper-layer protocols. It is a

minimum of 46 and a maximum of 1500 bytes.

CRC. The last field contains error detection information, in this case a CRC-32

Frame Length

Ethernet has imposed restrictions on both the minimum and maximum lengths of a

frame, as shown in below Figure

Minimum and maximum lengths

An Ethernet frame needs to have a minimum length of 512 bits or 64 bytes. Part

of this length is the header and the trailer. If we count 18 bytes of header and trailer (6

bytes of source address, 6 bytes of destination address, 2 bytes of length or type, and 4

bytes of CRC), then the minimum length of data from the upper layer is 64 - 18 = 46

bytes. If the upper-layer packet is less than 46 bytes, padding is added to make up the

difference

The standard defines the maximum length of a frame (without preamble and SFD

field) as 1518 bytes. If we subtract the 18 bytes of header and trailer,

the maximum length of the payload is 1500 bytes.

The maximum length restriction has two historical reasons.

First, memory was very expensive when Ethernet was designed: a maximum length

restriction helped to reduce the size of the buffer.

Second, the maximum length restriction prevents one station from monopolizing the

shared medium, blocking other stations that have data to send.

Addressing

The Ethernet address is 6 bytes (48 bits), normally written in hexadecimal notation, with a

colon between the bytes.

Example of an Ethernet address in hexadecimal notation

Unicast, Multicast, and Broadcast Addresses A source address is always a unicast

address-the frame comes from only one station. The destination address, however, can

be unicast, multicast, or broadcast. Below Figure shows how to distinguish a unicast

address from a multicast address.

If the least significant bit of the first byte in a destination address is 0, the address is

unicast; otherwise, it is multicast.

Unicast and multicast addresses

A unicast destination address defines only one recipient; the relationship between the

sender and the receiver is one-to-one.

A multicast destination address defines a group of addresses; the relationship between

the sender and the receivers is one-to-many.

The broadcast address is a special case of the multicast address; the recipients are all

the stations on the LAN. A broadcast destination address is forty-eight 1s.

Access Method: CSMA/CD

Standard Ethernet uses I-persistent CSMA/CD Slot

Time In an Ethernet network.

Slot time =round-trip time + time required to send the jam sequence

The slot time in Ethernet is defined in bits. It is the time required for a station

to send 512 bits. This means that the actual slot time depends on the data rate; for

traditional 10-Mbps Ethernet it is 51.2 micro sec.

Slot Time and Maximum Network Length There is a relationship between the slot time

and the maximum length of the network (collision domain). It is dependent on the

propagation speed of the signal in the particular medium.

In most transmission media, the signal propagates at 2 x 10
8
m/s (two-thirds of the rate

for propagation in air).

For traditional Ethernet, we calculate

MaxLength =PropagationSpeedx (SlotTime/2)

MaxLength= (2 x 10
8
) X(51.2 X10

-6
)/2= 5120m

Of course, we need to consider the delay times in repeaters and interfaces, and the

time required to send the jam sequence. These reduce the maximum- length of a

traditional Ethernet network to 2500 m, just 48 percent of the theoretical calculation.

MaxLength=2500 m

Physical Layer

The Standard Ethernet defines several physical layer implementations; four of the most

common, are shown in Figure

Encoding and Decoding

All standard implementations use digital signaling (baseband) at 10 Mbps. At the sender,

data are converted to a digital signal using the Manchester scheme; at the receiver, the

received signal is interpreted as Manchester and decoded into data. Manchester encoding

is self-synchronous, providing a transition at each bit interval. Figure shows the encoding

scheme for Standard Ethernet

In Manchester encoding, the transition at the middle of the bit is used for

synchronization

lOBase5: Thick Ethernet

The first implementation is called 10Base5, thick Ethernet, or Thicknet. lOBase5 was

the first Ethernet specification to use a bus topology with an external transceiver

(transmitter/receiver) connected via a tap to a thick coaxial cable. Figure shows a

schematic diagram of a lOBase5 implementation

10Base5 implementation

10Base2: Thin Ethernet

The second implementation is called 10 Base2, thin Ethernet, or Cheapernet. 10Base2

also uses a bus topology, but the cable is much thinner and more flexible. Figure shows

the schematic diagram of a 10Base2 implementation.

10Base2 implementation

thin coaxial cable is less expensive than thick coaxial.

Installation is simpler because the thin coaxial cable is very flexible.

However, the length of each segment cannot exceed 185 m (close to 200 m) due to the high

level of attenuation in thin coaxial cable.

1OBase-T: Twisted-Pair Ethernet

The third implementation is called 10Base-T or twisted-pair Ethernet. It uses a physical

star topology. The stations are connected to a hub via two pairs of twisted cable, as

shown in Figure

The maximum length of the twisted cable here is defined as 100 m, to minimize the

effect of attenuation in the twisted cable

10Base-T implementation

Although there are several types of optical fiber 10-Mbps Ethernet, the most common is

called 10Base-F.10Base-F uses a star topology to connect stations to a hub. The stations

are connected to the hub using two fiber-optic cables, as shown in Figure

10Base-F implementation

UNIT-III
Network Layer Design Issues

1. Store-and-forward packet switching

2. Services provided to transport layer

3. Implementation of connectionless service

4. Implementation of connection-oriented service

5. Comparison of virtual-circuit and datagram networks

1 Store-and-forward packet switching

A host with a packet to send transmits it to the nearest router, either on its own LAN or over a

point-to-point link to the ISP. The packet is stored there until it has fully arrived and the link has

finished its processing by verifying the checksum. Then it is forwarded to the next router along

the path until it reaches the destination host, where it is delivered. This mechanism is

store-and-forward packet switching.

2 Services provided to transport layer

The network layer provides services to the transport layer at the network layer/transport layer

interface. The services need to be carefully designed with the following goals in mind:

1. Services independent of router technology.

2. Transport layer shielded from number, type, topology of routers.

3. Network addresses available to transport layer use uniform numbering plan

– even across LANs and WANs

3 Implementation of connectionless service

If connectionless service is offered, packets are injected into the network individually and routed

independently of each other. No advance setup is needed. In this context, the packets

are frequently called datagrams (in analogy with telegrams) and the network is called a

datagram network.

A’s table (initially) A’s table (later) C’s Table E’s Table

Let us assume for this example that the message is four times longer than the maximum packet

size, so the network layer has to break it into four packets, 1, 2, 3, and 4, and send each of

them in turn to router A.

Every router has an internal table telling it where to send packets for each of the possible

destinations. Each table entry is a pair(destination and the outgoing line). Only directly

connected lines can be used.

A’s initial routing table is shown in the figure under the label ‘‘initially.’’

At A, packets 1, 2, and 3 are stored briefly, having arrived on the incoming link. Then each

packet is forwarded according to A’s table, onto the outgoing link to C within a new frame.

Packet 1 is then forwarded to E and then to F.

However, something different happens to packet 4. When it gets to A it is sent to router B,

even though it is also destined for F. For some reason (traffic jam along ACE path), A decided to

send packet 4 via a different route than that of the first three packets. Router A updated its

routing table, as shown under the label ‘‘later.’’

The algorithm that manages the tables and makes the routing decisions is called the routing

algorithm.

4 Implementation of connection-oriented service

A’s table C’s Table E’s Table

If connection-oriented service is used, a path from the source router all the way to the

destination router must be established before any data packets can be sent. This connection is

called a VC (virtual circuit), and the network is called a virtual-circuit network

When a connection is established, a route from the source machine to the destination machine

is chosen as part of the connection setup and stored in tables inside the routers. That route is

used for all traffic flowing over the connection, exactly the same way that the telephone

system works. When the connection is released, the virtual circuit is also terminated. With

connection-oriented service, each packet carries an identifier telling which virtual circuit it

belongs to.

As an example, consider the situation shown in Figure. Here, host H1 has established

connection 1 with host H2. This connection is remembered as the first entry in each of the

routing tables. The first line of A’s table says that if a packet bearing connection identifier 1

comes in from H1, it is to be sent to router C and given connection identifier 1. Similarly, the

first entry at C routes the packet to E, also with connection identifier 1.

Now let us consider what happens if H3 also wants to establish a connection to H2. It chooses

connection identifier 1 (because it is initiating the connection and this is its only connection)

and tells the network to establish the virtual circuit.

This leads to the second row in the tables. Note that we have a conflict here because although

A can easily distinguish connection 1 packets from H1 from connection 1 packets from H3, C

cannot do this. For this reason, A assigns a different connection identifier to the outgoing

traffic for the second connection. Avoiding conflicts of this kind is why routers need the ability

to replace connection identifiers in outgoing packets.

In some contexts, this process is called label switching. An example of a connection-oriented

network service is MPLS (Multi Protocol Label Switching).

5 Comparison of virtual-circuit and datagram networks

Routing Algorithms
The main function of NL (Network Layer) is routing packets from the source machine to the

destination machine.

There are two processes inside router:

a) One of them handles each packet as it arrives, looking up the outgoing line to use for it in

the routing table. This process is forwarding.

b) The other process is responsible for filling in and updating the routing tables. That is where

the routing algorithm comes into play. This process is routing.

Regardless of whether routes are chosen independently for each packet or only when new

connections are established, certain properties are desirable in a routing algorithm

correctness, simplicity, robustness, stability, fairness, optimality

Routing algorithms can be grouped into two major classes:

1) nonadaptive (Static Routing)

2) adaptive. (Dynamic Routing)

Nonadaptive algorithm do not base their routing decisions on measurements or estimates of

the current traffic and topology. Instead, the choice of the route to use to get from I to J is

computed in advance, off line, and downloaded to the routers when the network is booted.

This procedure is sometimes called static routing.

Adaptive algorithm, in contrast, change their routing decisions to reflect changes in the

topology, and usually the traffic as well.

Adaptive algorithms differ in

1) Where they get their information (e.g., locally, from adjacent routers, or from all routers),

2) When they change the routes (e.g., every ∆T sec, when the load changes or when the

topology changes), and

3) What metric is used for optimization (e.g., distance, number of hops, or estimated

transit time).

This procedure is called dynamic routing

Different Routing Algorithms

• Optimality principle

• Shortest path algorithm

• Flooding

• Distance vector routing

• Link state routing

• Hierarchical Routing

The Optimality Principle

One can make a general statement about optimal routes without regard to network topology

or traffic. This statement is known as the optimality principle.

It states that if router J is on the optimal path from router I to router K, then the optimal path

from J to K also falls along the same

As a direct consequence of the optimality principle, we can see that the set of optimal routes

from all sources to a given destination form a tree rooted at the destination. Such a tree is

called a sink tree. The goal of all routing algorithms is to discover and use the sink trees for all

routers

(a) A network. (b) A sink tree for router B.

Shortest Path Routing (Dijkstra’s)

The idea is to build a graph of the subnet, with each node of the graph representing a router and

each arc of the graph representing a communication line or link.

To choose a route between a given pair of routers, the algorithm just finds the shortest path between

them on the graph

1. Start with the local node (router) as the root of the tree. Assign a cost of 0 to this node and

make it the first permanent node.

2. Examine each neighbor of the node that was the last permanent node.

3. Assign a cumulative cost to each node and make it tentative

4. Among the list of tentative nodes

a. Find the node with the smallest cost and make it Permanent

b. If a node can be reached from more than one route then select the route with the

shortest cumulative cost.

5. Repeat steps 2 to 4 until every node becomes permanent

Flooding

• Another static algorithm is flooding, in which every incoming packet is sent out on every

outgoing line except the one it arrived on.

• Flooding obviously generates vast numbers of duplicate packets, in fact, an infinite number

unless some measures are taken to damp the process.

• One such measure is to have a hop counter contained in the header of each packet, which

is decremented at each hop, with the packet being discarded when the counter reaches

zero. Ideally, the hop counter should be initialized to the length of the path from source to

destination.

• A variation of flooding that is slightly more practical is selective flooding. In this algorithm

the routers do not send every incoming packet out on every line, only on those lines that

are going approximately in the right direction.

• Flooding is not practical in most applications.

Intra- and Inter domain Routing

An autonomous system (AS) is a group of networks and routers under the authority of a single

administration.

Routing inside an autonomous system is referred to as intra domain routing. (DISTANCE

VECTOR, LINK STATE)

Routing between autonomous systems is referred to as inter domain routing. (PATH VECTOR)

Each autonomous system can choose one or more intra domain routing protocols to handle

routing inside the autonomous system. However, only one inter domain routing protocol handles

routing between autonomous systems.

Distance Vector Routing

In distance vector routing, the least-cost route between any two nodes is the route with

minimum distance. In this protocol, as the name implies, each node maintains a vector (table)

of minimum distances to every node.

Mainly 3 things in this

Initialization

Sharing

Updating

Initialization

Each node can know only the distance between itself and its immediate neighbors, those

directly connected to it. So for the moment, we assume that each node can send a message to

the immediate neighbors and find the distance between itself and these neighbors. Below fig

shows the initial tables for each node. The distance for any entry that is not a neighbor is

marked as infinite (unreachable).

Initialization of tables in distance vector routing

Sharing

The whole idea of distance vector routing is the sharing of information between neighbors.

Although node A does not know about node E, node C does. So if node C shares its routing

table with A, node A can also know how to reach node E. On the other hand, node C does not

know how to reach node D, but node A does. If node A shares its routing table with node C,

node C also knows how to reach node D. In other words, nodes A and C, as immediate

neighbors, can improve their routing tables if they help each other.

NOTE: In distance vector routing, each node shares its routing table with its immediate

neighbors periodically and when there is a change

Updating

When a node receives a two-column table from a neighbor, it needs to update its routing table.

Updating takes three steps:

1. The receiving node needs to add the cost between itself and the sending node to each

value in the second column. (x+y)

2. If the receiving node uses information from any row. The sending node is the next node

in the route.

3. The receiving node needs to compare each row of its old table with the corresponding

row of the modified version of the received table.

a. If the next-node entry is different, the receiving node chooses the row with the

smaller cost. If there is a tie, the old one is kept.

b. If the next-node entry is the same, the receiving node chooses the new row.

For example, suppose node C has previously advertised a route to node X with distance 3.

Suppose that now there is no path between C and X; node C now advertises this route with a

distance of infinity. Node A must not ignore this value even though its old entry is smaller. The

old route does not exist anymore. The new route has a distance of infinity.

Updating in distance vector routing

Final Diagram

When to Share

The question now is, When does a node send its partial routing table (only two columns) to all

its immediate neighbors? The table is sent both periodically and when there is a change in the

table.

Periodic Update A node sends its routing table, normally every 30 s, in a periodic update. The

period depends on the protocol that is using distance vector routing.

Triggered Update A node sends its two-column routing table to its neighbors anytime there is

a change in its routing table. This is called a triggered update. The change can result from the

following.

1. A node receives a table from a neighbor, resulting in changes in its own table after updating.

2. A node detects some failure in the neighboring links which results in a distance change

to infinity.

Two-node instability

Three-node instability

SOLUTIONS FOR INSTABILITY

1. Defining Infinity: redefine infinity to a smaller number, such as 100. For our previous

scenario, the system will be stable in less than 20 updates. As a matter of fact, most

implementations of the distance vector protocol define the distance between each node to

be 1 and define 16 as infinity. However, this means that the distance vector routing cannot be

used in large systems. The size of the network, in each direction, cannot exceed 15 hops.

2. Split Horizon: In this strategy, instead of flooding the table through each interface, each

node sends only part of its table through each interface. If, according to its table, node B

thinks that the optimum route to reach X is via A, it does not need to advertise this piece of

information to A; the information has come from A (A already knows). Taking information

from node A, modifying it, and sending it back to node A creates the confusion. In our

scenario, node B eliminates the last line of its routing table before it sends it to A. In this

case, node A keeps the value of infinity as the distance to X. Later when node A sends its

routing table to B, node B also corrects its routing table. The system becomes stable after

the first update: both node A and B know that X is not reachable.

3. Split Horizon and Poison Reverse Using the split horizon strategy has one drawback.

Normally, the distance vector protocol uses a timer, and if there is no news about a route,

the node deletes the route from its table. When node B in the previous scenario eliminates

the route to X from its advertisement to A, node A cannot guess that this is due to the split

horizon strategy (the source of information was A) or because B has not received any news

about X recently. The split horizon strategy can be combined with the poison reverse

strategy. Node B can still advertise the value for X, but if the source of information is A, it

can replace the distance with infinity as a warning: "Do not use this value; what I know

about this route comes from you."

The Count-to-Infinity Problem

Link State Routing

Link state routing is based on the assumption that, although the global knowledge about the

topology is not clear, each node has partial knowledge: it knows the state (type, condition, and

cost) of its links. In other words, the whole topology can be compiled from the partial knowledge

of each node

Building Routing Tables

1. Creation of the states of the links by each node, called the link state packet (LSP).

2. Dissemination of LSPs to every other router, called flooding, in an efficient and reliable way.

3. Formation of a shortest path tree for each node.

4. Calculation of a routing table based on the shortest path tree

I. Creation of Link State Packet (LSP) A link state packet can carry a large amount of

information. For the moment, we assume that it carries a minimum amount of data: the

node identity, the list of links, a sequence number, and age. The first two, node identity and

the list of links, are needed to make the topology. The third, sequence number, facilitates

flooding and distinguishes new LSPs from old ones. The fourth, age, prevents old LSPs from

remaining in the domain for a long time.

LSPs are generated on two occasions:

1. When there is a change in the topology of the domain

2. on a periodic basis: The period in this case is much longer compared to distance

vector. The timer set for periodic dissemination is normally in the range of 60 min or 2 h

based on the implementation. A longer period ensures that flooding does not create too

much traffic on the network.

II. Flooding of LSPs: After a node has prepared an LSP, it must be disseminated to all other

nodes, not only to its neighbors. The process is called flooding and based on the following

1. The creating node sends a copy of the LSP out of each interface

2. A node that receives an LSP compares it with the copy it may already have. If the

newly arrived LSP is older than the one it has (found by checking the sequence number),

it discards the LSP. If it is newer, the node does the following:

a. It discards the old LSP and keeps the new one.

b. It sends a copy of it out of each interface except the one from which the packet

arrived. This guarantees that flooding stops somewhere in the domain (where a node

has only one interface).

III. Formation of Shortest Path Tree: Dijkstra Algorithm

A shortest path tree is a tree in which the path between the root and every other node is the

shortest.

The Dijkstra algorithm creates a shortest path tree from a graph. The algorithm divides the

nodes into two sets: tentative and permanent. It finds the neighbors of a current node, makes

them tentative, examines them, and if they pass the criteria, makes them permanent.

IV. Calculation of a routing table

routing table for node A

Path Vector Routing

Distance vector and link state routing are both intra domain routing protocols. They can be

used inside an autonomous system, but not between autonomous systems. These two

protocols are not suitable for inter domain routing mostly because of scalability. Both of these

routing protocols become intractable when the domain of operation becomes large. Distance

vector routing is subject to instability in the domain of operation. Link state routing needs a

huge amount of resources to calculate routing tables. It also creates heavy traffic because of

flooding. There is a need for a third routing protocol which we call path vector routing.

Path vector routing proved to be useful for inter domain routing. The principle of path vector

routing is similar to that of distance vector routing. In path vector routing, we assume that

there is one node (there can be more, but one is enough for our conceptual discussion) in each

AS that acts on behalf of the entire AS. Let us call it the speaker node. The speaker node in an

AS creates a routing table and advertises it to speaker nodes in the neighboring ASs. The idea is

the same as for distance vector routing except that only speaker nodes in each AS can

communicate with each other. However, what is advertised is different. A speaker node

advertises the path, not the metric of the nodes, in its autonomous system or other

autonomous systems

Initialization

Initial routing tables in path vector routing

Sharing

Just as in distance vector routing, in path vector routing, a speaker in an autonomous system

shares its table with immediate neighbors. In Figure, node A1 shares its table with nodes B1

and C1. Node C1 shares its table with nodes D1, B1, and A1. Node B1 shares its table with C1

and A1. Node D1 shares its table with C1.

Updating When a speaker node receives a two-column table from a neighbor, it updates its

own table by adding the nodes that are not in its routing table and adding its own autonomous

system and the autonomous system that sent the table. After a while each speaker has a table

and knows how to reach each node in other Ass

a) Loop prevention. The instability of distance vector routing and the creation of loops can be

avoided in path vector routing. When a router receives a message, it checks to see if its AS is

in the path list to the destination. If it is, looping is involved and the message is ignored.

b) Policy routing. Policy routing can be easily implemented through path vector routing. When

a router receives a message, it can check the path. If one of the AS listed in the path is

against its policy, it can ignore that path and that destination. It does not update its routing

table with this path, and it does not send this message to its neighbors.

c) Optimum path. What is the optimum path in path vector routing? We are looking for a path

to a destination that is the best for the organization that runs the AS. One system may use

RIP, which defines hop count as the metric; another may use OSPF with minimum delay

defined as the metric. In our previous figure, each AS may have more than one path to a

destination. For example, a path from AS4 to ASI can be AS4-AS3-AS2-AS1, or it can be AS4-

AS3-ASI. For the tables, we chose the one that had the smaller number of ASs, but this is

not always the case. Other criteria, such as security, safety, and reliability, can also be

applied

Hierarchical Routing

As networks grow in size, the router routing tables grow proportionally. Not only is router

memory consumed by ever-increasing tables, but more CPU time is needed to scan them and

more bandwidth is needed to send status reports about them.

At a certain point, the network may grow to the point where it is no longer feasible for every

router to have an entry for every other router, so the routing will have to be done

hierarchically, as it is in the telephone network.

When hierarchical routing is used, the routers are divided into what we will call regions. Each

router knows all the details about how to route packets to destinations within its own region

but knows nothing about the internal structure of other regions.

For huge networks, a two-level hierarchy may be insufficient; it may be necessary to group the

regions into clusters, the clusters into zones, the zones into groups, and so on, until we run out

of names for aggregations

When a single network becomes very large, an interesting question is ‘‘how many levels

should the hierarchy have?’’

For example, consider a network with 720 routers. If there is no hierarchy, each router needs 720

routing table entries.

If the network is partitioned into 24 regions of 30 routers each, each router needs 30 local entries

plus 23 remote entries for a total of 53 entries.

If a three-level hierarchy is chosen, with 8 clusters each containing 9 regions of 10 routers, each

router needs 10 entries for local routers, 8 entries for routing to other regions within its own

cluster, and 7 entries for distant clusters, for a total of 25 entries

Kamoun and Kleinrock (1979) discovered that the optimal number of levels for an N router

network is ln N, requiring a total of e ln N entries per router

CONGESTION CONTROL ALGORITHMS

Too many packets present in (a part of) the network causes packet delay and loss that

degrades performance. This situation is called congestion.

The network and transport layers share the responsibility for handling congestion. Since

congestion occurs within the network, it is the network layer that directly experiences it and

must ultimately determine what to do with the excess packets.

However, the most effective way to control congestion is to reduce the load that the transport

layer is placing on the network. This requires the network and transport layers to work

together. In this chapter we will look at the network aspects of congestion.

When too much traffic is offered, congestion sets in and performance degrades sharply

Above Figure depicts the onset of congestion. When the number of packets hosts send into the

network is well within its carrying capacity, the number delivered is proportional to the

number sent. If twice as many are sent, twice as many are delivered. However, as the offered

load approaches the carrying capacity, bursts of traffic occasionally fill up the buffers inside

routers and some packets are lost. These lost packets consume some of the capacity, so the

number of delivered packets falls below the ideal curve. The network is now congested. Unless

the network is well designed, it may experience a congestion collapse

difference between congestion control and flow control.

Congestion control has to do with making sure the network is able to carry the offered traffic.

It is a global issue, involving the behavior of all the hosts and routers.

Flow control, in contrast, relates to the traffic between a particular sender and a particular

receiver. Its job is to make sure that a fast sender cannot continually transmit data faster than

the receiver is able to absorb it.

To see the difference between these two concepts, consider a network made up of 100-Gbps

fiber optic links on which a supercomputer is trying to force feed a large file to a personal

computer that is capable of handling only 1 Gbps. Although there is no congestion (the

network itself is not in trouble), flow control is needed to force the supercomputer to stop

frequently to give the personal computer a chance to breathe.

At the other extreme, consider a network with 1-Mbps lines and 1000 large computers, half of

which are trying to transfer files at 100 kbps to the other half. Here, the problem is not that of

fast senders overpowering slow receivers, but that the total offered traffic exceeds what the

network can handle.

The reason congestion control and flow control are often confused is that the best way to

handle both problems is to get the host to slow down. Thus, a host can get a ‘‘slow down’’

message either because the receiver cannot handle the load or because the network cannot

handle it.

Several techniques can be employed. These include:

1. Warning bit

2. Choke packets

3. Load shedding

4. Random early discard

5. Traffic shaping

The first 3 deal with congestion detection and recovery. The last 2 deal with congestion avoidance

Warning Bit

1. A special bit in the packet header is set by the router to warn the source when congestion is

detected.

2. The bit is copied and piggy-backed on the ACK and sent to the sender.

3. The sender monitors the number of ACK packets it receives with the warning bit set and

adjusts its transmission rate accordingly.

Choke Packets

1. A more direct way of telling the source to slow down.

2. A choke packet is a control packet generated at a congested node and transmitted to

restrict traffic flow.

3. The source, on receiving the choke packet must reduce its transmission rate by a certain

percentage.

4. An example of a choke packet is the ICMP Source Quench Packet.

Hop-by-Hop Choke Packets

1. Over long distances or at high speeds choke packets are not very effective.

2. A more efficient method is to send to choke packets hop-by-hop.

3. This requires each hop to reduce its transmission even before the choke packet arrive at

the source

Load Shedding

1. When buffers become full, routers simply discard packets.

2. Which packet is chosen to be the victim depends on the application and on the error

strategy used in the data link layer.

3. For a file transfer, for, e.g. cannot discard older packets since this will cause a gap in the

received data.

4. For real-time voice or video it is probably better to throw away old data and keep new

packets.

5. Get the application to mark packets with discard priority.

Random Early Discard (RED)

1. This is a proactive approach in which the router discards one or more packets before the

buffer becomes completely full.

2. Each time a packet arrives, the RED algorithm computes the average queue length, avg.

3. If avg is lower than some lower threshold, congestion is assumed to be minimal or non-

existent and the packet is queued.

4. If avg is greater than some upper threshold, congestion is assumed to be serious and the

packet is discarded.

5. If avg is between the two thresholds, this might indicate the onset of congestion. The

probability of congestion is then calculated.

Traffic Shaping

1. Another method of congestion control is to “shape” the traffic before it enters the

network.

2. Traffic shaping controls the rate at which packets are sent (not just how many). Used in ATM

and Integrated Services networks.

3. At connection set-up time, the sender and carrier negotiate a traffic pattern (shape).

Two traffic shaping algorithms are:

Leaky Bucket

Token Bucket

The Leaky Bucket Algorithm used to control rate in a network. It is implemented as a single-

server queue with constant service time. If the bucket (buffer) overflows then packets are

discarded.

(a) A leaky bucket with water. (b) a leaky bucket with packets.

1. The leaky bucket enforces a constant output rate (average rate) regardless of the burstiness

of the input. Does nothing when input is idle.

2. The host injects one packet per clock tick onto the network. This results in a uniform flow of

packets, smoothing out bursts and reducing congestion.

3. When packets are the same size (as in ATM cells), the one packet per tick is okay. For

variable length packets though, it is better to allow a fixed number of bytes per tick. E.g.

1024 bytes per tick will allow one 1024-byte packet or two 512-byte packets or four 256-

byte packets on 1 tick

Token Bucket Algorithm

1. In contrast to the LB, the Token Bucket Algorithm, allows the output rate to vary,

depending on the size of the burst.

2. In the TB algorithm, the bucket holds tokens. To transmit a packet, the host must capture

and destroy one token.

3. Tokens are generated by a clock at the rate of one token every Δt sec.

4. Idle hosts can capture and save up tokens (up to the max. size of the bucket) in order to

send larger bursts later.

(a) Before. (b) After.

Leaky Bucket vs. Token Bucket

1. LB discards packets; TB does not. TB discards tokens.

2. With TB, a packet can only be transmitted if there are enough tokens to cover its length in

bytes.

3. LB sends packets at an average rate. TB allows for large bursts to be sent faster by speeding

up the output.

4. TB allows saving up tokens (permissions) to send large bursts. LB does not allow saving.

TRANSPORT LAYER
The network layer provides end-to-end packet delivery using datagrams or
virtual circuits.
The transport layer builds on the network layer to provide data transport from a
process on a source machine to a process on a destination machine with a
desired level of reliability that is independent of the physical networks currently
in use.

Services Provided to the Upper Layers

The ultimate goal of the transport layer is to provide efficient, reliable, and
cost-effective data transmission service to its users, normally processes in the
application layer.
To achieve this, the transport layer makes use of the services provided by the
network layer. The software and/or hardware within the transport layer that
does the work is called the transport entity.

The network, transport, and application layers.

The connection-oriented transport service. connections have three phases:
establishment, data transfer, and release.
Addressing and flow control
The connectionless transport service .

IP addresses versus port numbers

Figure 23.6 Multiplexing and demultiplexing

Figure 23.7 Error control

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

Transport Service Primitives

The primitives for a simple transport

service.

To start with, the server executes a LISTEN primitive, typically by calling a library
procedure that makes a system call that blocks the server until a client turns up.

When a client wants to talk to the server, it executes a CONNECT primitive. The
transport entity carries out this primitive by blocking the caller and sending a
packet to the server. The client’s CONNECT call causes a CONNECTION
REQUEST segment to be sent to the server. When it arrives, the transport entity
checks to see that the server is blocked on a LISTEN (i.e., is interested in handling
requests). If so, it then unblocks the server and sends a CONNECTION
ACCEPTED segment back to the client. When this segment arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the
simplest form, either party can do a (blocking) RECEIVE to wait for the other party
to do a SEND. When the segment arrives, the receiver is unblocked. It can then
process the segment and send a reply. As long as both sides can keep track of
whose turn it is to send, this scheme works fine.

When a connection is no longer needed, it must be released to free up table space
within the two transport entities. Disconnection has two variants: asymmetric and
symmetric.

In the asymmetric variant, either transport user can issue a DISCONNECT
primitive, which results in a DISCONNECT segment being sent to the remote
transport entity. Upon its arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of the
other one. When one side does a DISCONNECT, that means it has no more data to
send but it is still willing to accept data from its partner. In this model, a connection
is released when both sides have done a DISCONNECT

Transport Service Primitives

A state diagram for a simple connection management scheme. Transitions
labeled in italics are caused by packet arrivals. The solid lines show the
client's state sequence. The dashed lines show the
server's state sequence.

Elements of Transport

Protocols

• Addressing

• Connection Establishment

• Connection Release

• Flow Control and Buffering

• Multiplexing

• Crash Recovery

Transport Protocol

(a) Environment of the data link layer.

(b) Environment of the transport layer.

1 Over point-to-point links such as wires or optical fiber, it is usually not necessary
for a router to specify which router it wants to talk to—each outgoing line leads
directly to a particular router. In the transport layer, explicit addressing of destinations
is required.

2 The process of establishing a connection over the wire of Fig(a) is simple: the
other end is always there (unless it has crashed, in which case it is not there). Either
way, there is not much to do. Even on wireless links the process is not much
different. Just sending a message is sufficient to have it reach all other destinations.
If the message is not acknowledged due to an error, it can be resent. In the transport
layer, initial connection establishment is complicated, as we will see.

3 Another (exceedingly annoying) difference between the data link layer and the
transport layer is the potential existence of storage capacity in the network. The
consequences of the network’s ability to delay and duplicate packets can sometimes
be disastrous and can require the use of special protocols to correctly transport
information.
4. Buffering and flow control are needed in both layers, but the presence in the

transport layer of a large and varying number of connections with bandwidth that

fluctuates as the connections compete with each other may require a different

approach than we

Addressing

When an application (e.g., a user) process wishes to set up a connection to a
remote application process, it must specify which one to connect to. (Connectionless
transport has the same problem: to whom should each message be sent?) The
method normally used is to define transport addresses to which processes can listen
for connection requests. In the Internet, these endpoints are called ports. We will
use the generic term TSAP (Transport Service Access Point) to mean a specific
endpoint in the transport layer. The analogous endpoints in the network layer (i.e.,
network layer addresses) are not-surprisingly called NSAPs (Network Service
Access Points). IP addresses are examples of NSAPs.

Addressing

TSAPs, NSAPs and transport

connections.

A possible scenario for a transport connection is as follows:
1. A mail server process attaches itself to TSAP 1522 on host 2 to wait for an
incoming call. A call such as our LISTEN might be used, for example.
2. An application process on host 1 wants to send an email message, so it
attaches itself to TSAP 1208 and issues a CONNECT request. The request
specifies TSAP 1208 on host 1 as the source and TSAP 1522 on host 2 as the
destination. This action ultimately results in a transport connection being
established between the application process and the server.
3. The application process sends over the mail message.
4. The mail server responds to say that it will deliver the message.
5. The transport connection is released.

special process called a portmapper

CONNECTION ESTABLISHMENT
Establishing a connection sounds easy, but it is actually surprisingly tricky. At first
glance, it would seem sufficient for one transport entity to just send a CONNECTION
REQUEST segment to the destination and wait for a CONNECTION ACCEPTED
reply. The problem occurs when the network can lose, delay, corrupt, and duplicate
packets. This behavior causes serious complications

To solve this specific problem,(DELAYED DUPLICATES) Tomlinson (1975)
introduced the three-way handshake. This establishment protocol involves one
peer checking with the other that the connection request is indeed current. The
normal setup procedure when host 1 initiates is shown in Fig. (a). Host 1 chooses
a sequence number, x, and sends a CONNECTION REQUEST segment
containing it to host 2. Host 2 replies with an ACK segment acknowledging x and
announcing its own initial sequence number, y. Finally, host 1 acknowledges host
2’s choice of an initial sequence number in the first data segment that it sends.

Connection Establishment

Three protocol scenarios for establishing a connection using a
three-way handshake. CR denotes CONNECTION REQUEST.
(a) Normal operation,
(b) Old CONNECTION REQUEST appearing out of nowhere.
(c) Duplicate CONNECTION REQUEST and duplicate ACK.

In Fig.(b), the first segment is a delayed duplicate CONNECTION REQUEST from
an old connection. This segment arrives at host 2 without host 1’s knowledge. Host
2 reacts to this segment by sending host 1 an ACK segment, in effect asking for
verification that host 1 was indeed trying to set up a new connection. When host 1
rejects host 2’s attempt to establish a connection, host 2 realizes that it was tricked
by a delayed duplicate and abandons the connection. In this way, a delayed
duplicate does no damage

The worst case is when both a delayed CONNECTION REQUEST and an ACK are
floating around in the subnet. This case is shown in Fig. (c). As in the previous
example, host 2 gets a delayed CONNECTION REQUEST and replies to it. At this
point, it is crucial to realize that host 2 has proposed using y as the initial sequence
number for host 2 to host 1 traffic, knowing full well that no segments containing
sequence number y or acknowledgements to y are still in existence. When the
second delayed segment arrives at host 2, the fact that z has been acknowledged
rather than y tells host 2 that this, too, is an old duplicate. The important thing to
realize here is that there is no combination of old segments that can cause the
protocol to fail and have a connection set up by accident when no one wants it.

Connection Release

Abrupt disconnection with loss of data.

there are two styles of terminating a connection: asymmetric release and symmetric
release Asymmetric release is the way the telephone system works: when one party
hangs up, the connection is broken. Symmetric release treats the connection as two
separate unidirectional connections and requires each one to be released separately

Asymmetric release is abrupt and may result in data loss. Consider the scenario of Fig.
After the connection is established, host 1 sends a segment that arrives properly at host
2. Then host 1 sends another segment. Unfortunately, host 2 issues a DISCONNECT
before the second segment arrives. The result is that the connection is released and
data are lost.

Clearly, a more sophisticated release protocol is needed to avoid data loss. One way is
to use symmetric release, in which each direction is released independently of the other
one. Here, a host can continue to receive data even after it has sent a DISCONNECT
segment.
Symmetric release does the job when each process has a fixed amount of data to send
and clearly knows when it has sent it. One can envision a protocol in which host 1 says
‘‘I am done. Are you done too?’’ If host 2 responds: ‘‘I am done too. Goodbye, the
connection can be safely released.’’

Connection Release

The two-army problem.

Connection Release

Four protocol scenarios for releasing a connection. (a) Normal case of a three-way

handshake. (b) final ACK lost.

Connection Release

(c) Response lost. (d) Response lost and subsequent

DRs lost.

In Fig. (a), we see the normal case in which one of the users sends a DR

(DISCONNECTION REQUEST) segment to initiate the connection release. When it

arrives, the recipient sends back a DR segment and starts a timer, just in case its

DR is lost. When this DR arrives, the original sender sends back an ACK segment

and releases the connection. Finally, when the ACK segment arrives, the receiver

also releases the connection.

If the final ACK segment is lost, as shown in Fig.(b), the situation is saved by the

timer. When the timer expires, the connection is released anyway. Now consider

the case of the second DR being lost. The user initiating the disconnection will

not receive the expected response, will time out, and will start all over again.

In Fig.(c), we see how this works, assuming that the second time no segments

are lost and all segments are delivered correctly and on time.

Last scenario, Fig.(d), is the same as Fig. (c) except that now we assume all the

repeated attempts to retransmit the DR also fail due to lost segments. After N

retries, the sender just gives up and

releases the connection. Meanwhile, the receiver times out and

TCP
TCP is a connection oriented protocol; it creates a virtual connection between two
TCPs to send data. In addition, TCP uses flow and error control mechanisms at the
transport level. In brief, TCP is called a connection-oriented, reliable transport
protocol. It adds connection-oriented and reliability features to the services of IP.

Topics discussed in this section:

TCP Services TCP
Features Segment
A TCP Connection Flow
Control Error Control

TCP Services

1 Process-to-Process Communication

TCP provides process-to-process communication using port numbers. Below

Table lists some well-known port numbers used by TCP.

2 Stream Delivery Service

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP
creates an environment in which the two processes seem to be connected by an
imaginary "tube“ that carries their data across the Internet. This imaginary
environment is showed in below Figure. The sending process produces (writes to)
the stream of bytes, and the receiving process consumes (reads from) them

3 Sending and Receiving Buffers Because the sending and the receiving
processes may not write or read data at the same speed, TCP needs buffers for
storage. There are two buffers, the sending buffer and the receiving buffer, one for
each direction. One way to implement a buffer is to use a circular array of I-byte
locations as shown in Figure. For simplicity, we have shown two buffers of 20 bytes
each. Normally the buffers are hundreds or thousands of bytes, depending on the
implementation. We also show the buffers as the same size, which is not always
the case.

Figure shows the movement of the data in one direction. At the sending site, the
buffer has three types of chambers. The white section contains empty chambers
that can be filled by the sending process (producer). The gray area holds bytes that
have been sent but not yet acknowledged. TCP keeps these bytes in the buffer
until it receives an acknowledgment. The colored area contains bytes to be sent by
the sending TCP.
However, as we will see later in this chapter, TCP may be able to send only part of
this colored section. This could be due to the slowness of the receiving process or
perhaps to congestion in the network. Also note that after the bytes in the gray
chambers are acknowledged, the chambers are recycled and available for use by
the sending process.
This is why we show a circular buffer.

The operation of the buffer at the receiver site is simpler. The circular buffer is
divided into two areas (shown as white and colored). The white area contains
empty chambers to be filled by bytes received from the network. The colored
sections contain received bytes that can be read by the receiving process. When a
byte is read by the receiving process, the chamber is recycled and added to the
pool of empty chambers.

4 TCP segments

At the transport layer, TCP groups a number of bytes together into a packet called a
segment. TCP adds a header to each segment (for control purposes) and delivers
the segment to the IP layer for transmission. The segments are encapsulated in IP
datagrams and transmitted.
This entire operation is transparent to the receiving process. Later we will see that
segments may be received out of order, lost, or corrupted and resent. All these are
handled by TCP with the receiving process unaware of any activities. Above fig
shows how segments are created from the bytes in the buffers

23.34

5 Full-Duplex Communication
TCP offers full-duplex service, in which data can flow in both directions at the same
time. Each TCP then has a sending and receiving buffer, and segments move in
both directions

6 Connection-Oriented Service
TCP is a connection-oriented protocol. When a process at site A wants to send and
receive data from another process at site B, the following occurs:
1. The two TCPs establish a connection between them.
2. Data are exchanged in both directions.
3. The connection is terminated.

7 Reliable Service
TCP is a reliable transport protocol. It uses an acknowledgment mechanism to
check the safe and sound arrival of data. We will discuss this feature further in the
section on error control.

TCP Features
1 Numbering System
There are two fields called the sequence number and the acknowledgment
number. These two fields refer to the byte number and not the segment number.
Byte Number The bytes of data being transferred in each connection are

numbered by TCP. The numbering starts with a randomly generated number. For
example, if the random number happens to be 1057 and the total data to be sent
are 6000 bytes, the bytes are numbered from 1057 to 7056. We will see that byte
numbering is used for flow and error control.
Sequence Number After the bytes have been numbered, TCP assigns a
sequence number to each segment that is being sent. The sequence number for
each segment is the number of the first byte carried in that segment.
Acknowledgment Number The value of the acknowledgment field in a segment
defines the number of the next byte a party expects to receive. The
acknowledgment number is cumulative.

2 Flow Control
TCP, provides flow control. The receiver of the data controls the amount of data
that are to be sent by the sender. This is done to prevent the receiver from being
overwhelmed with data. The numbering system allows TCP to use a
byte-oriented flow control.

3 Error Control
To provide reliable service, TCP implements an error control mechanism.
Although error control considers a segment as the unit of data for error detection
(loss or corrupted segments), error control is byte-oriented, as we will see later.

4 Congestion Control
TCP takes into account congestion in the network. The amount of data sent by a
sender is not only controlled by the receiver (flow control), but is also determined
by the level of congestion in the network

TCP segment format

23.38

The segment consists of a 20- to 60-byte header,.
Source port address. This is a 16-bit field that defines the port number of the application
program in the host that is sending the segment.
Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment.
Sequence number. This 32-bit field defines the number assigned to the first byte of data
contained in this segment. As we said before, TCP is a stream transport protocol. To
ensure connectivity, each byte to be transmitted is numbered. The sequence number tells
the destination which byte in this sequence comprises the first byte in the segment.
During connection establishment, each party uses a random number generator to create
an initial sequence number (ISN), which is usually different in each direction.
Acknowledgment number. This 32-bit field defines the byte number that the receiver of
the segment is expecting to receive from the other party. If the receiver of the segment
has successfully received byte number x from the other party, it defines x + I as the
acknowledgment number. Acknowledgment and data can be piggybacked together.
Header length. This 4-bit field indicates the number of 4-byte words in the TCP header.
The length of the header can be between 20 and 60 bytes. Therefore, the value of this
field can be between 5 (5 x 4 =20) and 15 (15 x 4 =60).
Reserved. This is a 6-bit field reserved for future use.
Control. This field defines 6 different control bits or flags as shown in Figure. One or more
of these bits can be set at a time.

These bits enable flow control, connection establishment and termination, connection
abortion, and the mode of data transfer in TCP.

Window size. This field defines the size of the window, in bytes, that the other party
must maintain. Note that the length of this field is 16 bits, which means that the
maximum size of the window is 65,535 bytes. This value is normally referred to as the
receiving window (rwnd) and is determined by the receiver. The sender must obey the
dictation of the receiver in this case.
Checksum. This 16-bit field contains the checksum. The calculation of the checksum
for TCP follows the same procedure as the one described for UDP. However, the
inclusion of the checksum in the UDP datagram is optional, whereas the inclusion of
the checksum for TCP is mandatory. The same pseudoheader, serving the same
purpose, is added to the segment. For the TCP pseudoheader, the value for the
protocol field is 6.

Urgent pointer. This l6-bit field, which is valid only if the urgent flag is set, is used
when the segment contains urgent data. It defines the number that must be added
to the sequence number to obtain the number of the last urgent byte in the data
section of the segment. This will be discussed later in this chapter.
Options. There can be up to 40 bytes of optional information in the TCP header. We
will not discuss these options here; please refer to the reference list for more
information.

A TCP Connection

TCP is connection-oriented. A connection-oriented transport protocol establishes
a virtual path between the source and destination. All the segments belonging to a
message are then sent over this virtual path. Using a single virtual pathway for the
entire message facilitates the acknowledgment process as well as retransmission
of damaged or lost frames.

In TCP, connection-oriented transmission requires three phases:
1. connection establishment,
2. data transfer,
3. connection termination.

TCP connection establishment(3 way handshaking)

1 The client sends the first segment, a SYN segment, in which only the SYN flag is set.
NOTE:A SYN segment cannot carry data, but it consumes one sequence number.

2. The server sends the second segment, a SYN +ACK segment, with 2 flag bits set:
SYN and ACK. This segment has a dual purpose. It is a SYN segment for
communication in the other direction and serves as the
acknowledgment for the SYN segment. It consumes one sequence number. NOTE:A
SYN+ACK segment cannot carry data, but does consume one sequence number

3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field. Note that the sequence number in this segment is the same as the one in the
SYN segment; the ACK segment does not consume any sequence numbers.
NOTE: An ACK segment, if carrying no data, consumes no sequence number

SYN Flooding Attack
This happens when a malicious attacker sends a large number of SYN segments
to a server, pretending that each of them is corning from a different client by faking
the source IP addresses in the datagram's.
The server, assuming that the clients are issuing an active open, allocates the
necessary resources, such as creating communication tables and setting timers.
The TCP server then sends the SYN +ACK segments to the fake clients, which are
lost. During this time, however, a lot of resources are occupied without being used.
If, during this short time, the number of SYN segments is large, the server
eventually runs out of resources and may crash. This SYN flooding attack belongs
to a type of security attack known as a denial-of-service attack, in which an
attacker monopolizes a system with so many service requests that the system
collapses and denies service to every request.
SOLUTIONS:
1 Some have imposed a limit on connection requests during a specified period

of

time.

2 Others filter out datagrams coming from unwanted source addresses.

3 One recent strategy is to postpone resource allocation until the

entire connection is set up, using what is called a cookie.

Data Transfer
After connection is established, bidirectional data transfer can take place. The client
and server can both send data and acknowledgments. Data traveling in the same
direction as an acknowledgment are carried on the same segment. The
acknowledgment is piggybacked with the data

In this example, after connection is established (not shown in the figure), the client
sends 2000 bytes of data in two segments. The server then sends 2000 bytes in
one segment. The client sends one more segment. The first three segments carry
both data and acknowledgment, but the last segment carries only an
acknowledgment because there are no more data to be sent.
Note the values of the sequence and acknowledgment numbers. The data
segments sent by the client have the PSH (push) flag set so that the server TCP
knows to deliver data to the server process as soon as they are received.

Data transfer

PUSHING DATA: Delayed transmission and delayed delivery of data may not be
acceptable by the application program.
TCP can handle such a situation. The application program at the sending site can
request a push operation. This means that the sending TCP must not wait for the
window to be filled. It must create a segment and send it immediately. The
sending TCP must also set the push bit (PSH) to let the receiving TCP know that
the segment includes data that must be delivered to the receiving application
program as soon as possible and not to wait for more data to come.

Urgent Data : TCP is a stream-oriented protocol. This means that the data are
presented from the application program to TCP as a stream of bytes. Each byte of
data has a position in the stream. However, sending application program wants a
piece of data to be read out of order by the receiving application program.

Connection Termination (three-way handshaking and four-way handshaking with a
half-close option.)

1. In a normal situation, the client TCP, after receiving a close command from the
client process, sends the first segment, a FIN segment in which the FIN flag is set.
Note that a FIN segment can include the last chunk of data sent by the client, or it
can be just a control segment as shown in Figure. If it is only a control segment, it
consumes only one sequence number.
NOTE: The FIN segment consumes one sequence number ifit does not carry data.

2 The server TCP, after receiving the FIN segment, informs its process of the
situation and sends the second segment, a FIN +ACK segment, to confirm the
receipt of the FIN segment from the client and at the same time to announce the
closing of the connection in the other direction. This segment can also contain the
last chunk of data from the server. If it does not carry data, it consumes only one
sequence number.
NOTE: The FIN +ACK segment consumes one sequence number if it does not

carry data.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt
of the FIN segment from the TCP server. This segment contains the
acknowledgment number, which is 1 plus the sequence number received in the FIN
segment from the server. This segment cannot carry data and consumes no
sequence numbers.

Half-Close In TCP, one end can stop sending data while still receiving data. This is
called a half-close. Although either end can issue a half-close, it is normally initiated
by the client. It can occur when the server needs all the data before processing can
begin.
A good example is sorting. When the client sends data to the server to be sorted,
the server needs to receive all the data before sorting can start. This means the
client, after sending all the data, can close the connection in the outbound direction.
However, the inbound direction must remain open to receive the sorted data. The
server, after receiving the data, still needs time for sorting; its outbound direction
must remain open

Connection termination using three-way handshaking

Figure 23.21 Half-close

Flow Control or TCP Sliding Window
TCP uses a sliding window, to handle flow control. The sliding window protocol
used by TCP, however, is something between the Go-Back-N and Selective
Repeat sliding window.

The sliding window protocol in TCP looks like the Go-Back-N protocol because it
does not use NAKs;
it looks like Selective Repeat because the receiver holds the out-of-order
segments until the missing ones arrive.

There are two big differences between this sliding window and the one we used at
the data link layer.
1 the sliding window of TCP is byte-oriented; the one we discussed in the data
link layer is frame-oriented.
2 the TCP's sliding window is of variable size; the one we discussed in the data
link layer was of fixed size

Sliding window

The window is opened, closed, or shrunk. These three activities, as we will see,
are in the control of the receiver (and depend on congestion in the network), not
the sender.
The sender must obey the commands of the receiver in this matter. Opening a
window means moving the right wall to the right. This allows more new bytes in the
buffer that are eligible for sending.
Closing the window means moving the left wall to the right. This means that some
bytes have been acknowledged and the sender need not worry about them
anymore.
Shrinking the window means moving the right wall to the left.

The size of the window at one end is determined by the lesser of two values:
receiver window (rwnd) or congestion window (cwnd).
The receiver window is the value advertised by the opposite end in a segment
containing acknowledgment. It is the number of bytes the other end can accept
before its buffer overflows and data are discarded.
The congestion window is a value determined by the network to avoid congestion

Window management in TCP

When the window is 0, the sender may not normally send segments, with two
exceptions.
1) urgent data may be sent, for example, to allow the user to kill the process running

on the remote machine.
2) the sender may send a 1-byte segment to force the receiver to reannounce the

next byte expected and the window size. This packet is called a window probe.
The TCP standard explicitly provides this option to prevent deadlock if a window

update ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible.

For example, in Fig. when the first 2 KB of data came in, TCP, knowing that it had a
4-KB window, would have been completely correct in just buffering the data until
another 2 KB came in, to be able to transmit a segment with a 4-KB payload. This
freedom can be used to improve performance

3.
send echo of character and/or

output

1.

Host with Telnet
client

send character Ho
st
with
Telne
t
serve
r

Remote terminal applications (e.g., Telnet) send characters to a server.
The server interprets the character and sends the output at the server to the
client.

For each character typed, you see three packets:
Client Server: Send typed character
Server Client: Echo of character (or user output) and

acknowledgement for first packet
Client Server: Acknowledgement for second packet

Delayed Acknowledgement

• TCP delays transmission of ACKs for up to 500ms

• Avoid to send ACK packets that do not carry data.
– The hope is that, within the delay, the receiver will have data ready to be sent to

the receiver. Then, the ACK can be piggybacked with a data segment
Exceptions:

• ACK should be sent for every full sized segment
• Delayed ACK is not used when packets arrive out of order

Although delayed acknowledgements reduce the load placed on the network by
the receiver, a sender that sends multiple short packets (e.g., 41-byte packets
containing 1 byte of data) is still operating inefficiently. A way to reduce this usage
is known as Nagle’s algorithm (Nagle, 1984).

59

Nagel’s Rule

Send one byte and buffer all subsequent bytes until acknowledgement is received.
Then send all buffered bytes in a single TCP segment and start buffering again until
the sent segment is acknowledged.
Nagle’s algorithm will put the many pieces in one segment, greatly reducing the
bandwidth used

Nagle’s algorithm is widely used by TCP implementations, but there are times when
it is better to disable it. In particular, in interactive games that are run over the
Internet.
A more subtle problem is that Nagle’s algorithm can sometimes interact with delayed
acknowledgements to cause a temporary deadlock: the receiver waits for data on
which to piggyback an acknowledgement, and the sender waits on the
acknowledgement to send more data.

Because of these problems, Nagle’s algorithm can be disabled (which is called the
TCP NODELAY option).

Another problem that can degrade TCP performance is the silly window syndrome
(Clark, 1982).

Clark’s solution is to prevent the receiver from sending a window update for 1 byte.
Instead, it is forced to wait until it has a decent amount of space available and
advertise that instead. Specifically, the receiver should not send a window update
until it can handle the maximum segment size it advertised when the connection
was established or until its buffer is half empty, whichever is smaller.

Furthermore, the sender can also help by not sending tiny segments. Instead, it
should wait until it can send a full segment, or at least one containing half of the
receiver’s buffer size.

The goal is for the sender not to send small segments and the receiver not to ask for
them. (Nagel + Clark). Both are used to improve TCP performance

The receiver will buffer the data until it can be passed up to the application in

order (handling out of order segments)

Cumulative acknowledgements

Error Control
TCP is a reliable transport layer protocol. This means that an application program
that delivers a stream of data to TCP relies on TCP to deliver the entire stream to the
application program on the other end in order, without error, and without any part lost
or duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting corrupted segments, lost segments, out-of-order segments, and duplicated
segments. Error control also includes a mechanism for correcting errors after they
are detected. Error detection and correction in TCP is achieved through the use of
three simple tools: checksum, acknowledgment, and time-out.

Checksum
Each segment includes a checksum field which is used to check for a corrupted
segment. If the segment is corrupted, it is discarded by the destination TCP and is
considered as lost. TCP uses a 16-bit checksum that is mandatory in every segment

Figure 23.11 Checksum calculation of a simple UDP user datagram

23.64

Acknowledgment
TCP uses acknowledgments to confirm the receipt of data segments. Control
segments that carry no data but consume a sequence number are also
acknowledged. ACK segments are never acknowledged.
ACK segments do not consume sequence numbers and are not acknowledged.

Retransmission
The heart of the error control mechanism is the retransmission of segments. When
a segment is corrupted, lost, or delayed, it is retransmitted.
In modern implementations, a retransmission occurs if the retransmission timer
expires or three duplicate ACK segments have arrived.

Retransmission After RTO (retransmission time out)

Retransmission After Three Duplicate ACK Segments (also called fast retransmission)

Out-of-Order Segments

Data may arrive out of order and be temporarily stored by the receiving TCP, but
yet guarantees that no out-of-order segment is delivered to the process

TCP Congestion Control

When the load offered to any network is more than it can handle, congestion builds
up.
The network layer detects congestion when queues grow large at routers and tries
to manage it, if only by dropping packets. It is up to the transport layer to receive
congestion feedback from the network layer and slow down the rate of traffic that it
is sending into the network.

For Congestion control, transport protocol uses an AIMD (Additive Increase
Multiplicative Decrease) control law.

TCP congestion control is based on implementing this approach using a window
called congestion window. TCP adjusts the size of the window according to the
AIMD rule.

The window size at the sender is set as follows:

Send Window = MIN (flow control window, congestion window)

where

flow control window is advertised by the receiver (rwnd) congestion window is

adjusted based on feedback from the

Modern congestion control was added to TCP largely through the efforts of Van
Jacobson (1988). It is a fascinating story. Starting in 1986, the growing popularity of
the early Internet led to the first occurrence of what became known as a
congestion collapse, a prolonged period during which good put dropped suddenly
(i.e., by more than a factor of 100) due to congestion in the network. Jacobson (and
many others) set out to understand what was happening and remedy the situation.

To start, he observed that packet loss is a suitable signal of congestion. This signal
comes a little late (as the network is already congested) but it is quite dependable

At the beginning how sender knows at what speed receiver can receive the
packets?

The key observation is this: the acknowledgements return to the sender at about
the rate that packets can be sent over the slowest link in the path. This is
precisely the rate that the sender wants to use. If it injects new packets into the
network at this rate, they will be sent as fast as the slow link permits, but they
will not queue up and congest any router along the path. This timing is known as
an ack clock. It is an essential part of TCP. By using an ack clock, TCP
smoothes out traffic and avoids unnecessary queues at routers. This is first
consideration

A second consideration is that the AIMD rule will take a very long time to reach a
good operating point on fast networks if the congestion window is started from a
small size

Instead, the solution Jacobson chose to handle both of these considerations is a
mix of linear and multiplicative increase.

SLOW-START

Whenever a packet loss is detected, for example, by a timeout, the slow start
threshold is set to be half of the congestion window and the entire process is
restarted.

Congestion avoidance phase is started if cwnd has reached the slow start
threshold value

Whenever the slow start threshold is crossed, TCP switches from slow start to
additive increase. In this mode, the congestion window is increased by one
segment every round-trip time.

71

Responses to Congestion

• So, TCP assumes there is congestion if it detects a

packet loss

• A TCP sender can detect lost packets via:

• Timeout of a retransmission timer

• Receipt of a duplicate ACK

• TCP interprets a Timeout as a binary congestion signal. When a timeout occurs,

the sender performs:

– cwnd is reset to one:

cwnd = 1

– ssthresh is set to half the current size of the congestion window:

ssthressh = cwnd / 2

– and slow-start is entered

73

Fast Retransmit

• If three or more duplicate ACKs are

received in a row, the TCP sender

believes that a segment has been

lost.

• Then TCP performs a retransmission

of what seems to be the missing

segment, without waiting for a

timeout to happen.

• Enter slow start:

ssthresh = cwnd/2 cwnd = 1

Flavors of TCP Congestion

Control

• TCP Tahoe (1988)

– Slow Start

– Congestion Avoidance

– Fast Retransmit

• TCP Reno (1990) (TCP Tahoe+FR)

– Fast Recovery

• New Reno (1996)

• SACK (1996) (SACK (Selective

ACKnowledgements))

• RED (Floyd and Jacobson 1993)

75

The use of ECN (Explicit Congestion Notification) in addition to packet loss as a
congestion signal. ECN is an IP layer mechanism to notify hosts of congestion.

The sender tells the receiver that it has heard the signal by using the CWR
(Congestion Window Reduced) flag.

USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does not add
anything to the services of IP except to provide
process-to-process communication instead of host-to- host
communication.
Topics discussed in this section:
Well-Known Ports for UDP User
Datagram
Checksum UDP
Operation Use of UDP

Table 23.1 Well-known ports used with UDP

Figure 23.9 User datagram format

Checksum (OPTIONAL,IF NOT USED SET ALL 1’S DEFAULT)

The UDP checksum calculation is different from the one for IP and ICMP. Here the
checksum includes three sections: a pseudo header, the UDP header, and the data
coming from the application layer.
The pseudo header is the part of the header of the IP packet in which the user
datagram is to be encapsulated with some fields filled with Os

If the checksum does not include the pseudo header, a user datagram may arrive safe
and sound. However, if the IP header is corrupted, it may be delivered to the wrong
host.
The protocol field is added to ensure that the packet belongs to UDP, and not to other
transport-layer protocols.

Figure 23.10 Pseudoheader for checksum calculation

UDP Operation

Connectionless Services

UDP provides a connectionless service. This means that each user datagram sent by UDP is

an independent datagram. There is no relationship between the different user datagrams

even if they are coming from the same source process and going to the same destination

program. The user datagrams are not numbered. Also, there is no connection establishment

and no connection termination, as is the case for TCP. This means that each user datagram

can travel on a different path.

Flow and Error Control

UDP is a very simple, unreliable transport protocol. There is no flow control and hence no

window mechanism. The receiver may overflow with incoming messages. There is no error

control mechanism in UDP except for the checksum. This means that the sender does not

know if a message has been lost or duplicated. When the receiver detects an error through

the checksum, the user datagram is silently discarded. The lack of flow control and error

control

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and decapsulates

messages in an IP datagram.

Figure 23.11 shows the checksum calculation for a very small
user datagram with only 7 bytes of data. Because the number of
bytes of data is odd, padding is added for checksum calculation.
The pseudoheader as well as the padding will be dropped when
the user datagram is delivered to IP.

Figure 23.11 Checksum calculation of a simple UDP user datagram

Figure 23.12 Queues in UDP

Remote Procedure Call

The key work was done by Birrell and Nelson (1984). In a nutshell, what Birrell and
Nelson suggested was allowing programs to call procedures located on remote
hosts. When a process on machine 1 calls a procedure on machine 2, the calling
process on 1 is suspended and execution of the called procedure takes place on 2.
Information can be transported from the caller to the callee in the parameters and
can come back in the procedure result. No message passing is visible to the
application programmer. This technique is known as RPC (Remote Procedure
Call). Traditionally, the calling procedure is known as the client and the called
procedure is known as the server, and we will use those names here too.

to call a remote procedure, the client program must be bound with a small library
procedure, called the client stub, that represents the server procedure in the client’s
address space. Similarly, the server is bound with a procedure called the server
stub. These procedures hide the fact that the procedure call from the client to the
server is not local

Step 1 is the client calling the client stub. This call is a local procedure call, with the
parameters pushed onto the stack in the normal way.
Step 2 is the client stub packing the parameters into a message and making a
system call to send the message. Packing the parameters is called marshaling.
Step 3 is the operating system sending the message from the client machine to the
server machine.
Step 4 is the operating system passing the incoming packet to the server stub.
Finally, step 5 is the server stub calling the server procedure with the unmarshaled
parameters.
The reply traces the same path in the other direction.

Problems with RPC:

1 With RPC, passing pointers is impossible because the client and server are in
different address spaces.
2 It is essentially impossible for the client stub to marshal the parameters: it has
no way of determining how large they are.
3 A third problem is that it is not always possible to deduce the types of the
parameters, not even from a formal specification or the code itself.(exa: printf)
4 A fourth problem relates to the use of global variables. Normally, the calling and
called procedure can communicate by using global variables, in addition to
communicating via parameters. But if the called procedure is moved to a remote
machine, the code will fail because the global variables are no longer shared

TCP
TCP is a connection oriented protocol; it creates a virtual connection between two
TCPs to send data. In addition, TCP uses flow and error control mechanisms at the
transport level. In brief, TCP is called a connection-oriented, reliable transport
protocol. It adds connection-oriented and reliability features to the services of IP.

Topics discussed in this section:

TCP Services TCP
Features Segment
A TCP Connection Flow
Control Error Control

TCP Services

1 Process-to-Process Communication

TCP provides process-to-process communication using port numbers. Below

Table lists some well-known port numbers used by TCP.

2 Stream Delivery Service

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP
creates an environment in which the two processes seem to be connected by an
imaginary "tube“ that carries their data across the Internet. This imaginary
environment is showed in below Figure. The sending process produces (writes to)
the stream of bytes, and the receiving process consumes (reads from) them

3 Sending and Receiving Buffers Because the sending and the receiving
processes may not write or read data at the same speed, TCP needs buffers for
storage. There are two buffers, the sending buffer and the receiving buffer, one for
each direction. One way to implement a buffer is to use a circular array of I-byte
locations as shown in Figure. For simplicity, we have shown two buffers of 20 bytes
each. Normally the buffers are hundreds or thousands of bytes, depending on the
implementation. We also show the buffers as the same size, which is not always
the case.

Figure shows the movement of the data in one direction. At the sending site, the
buffer has three types of chambers. The white section contains empty chambers
that can be filled by the sending process (producer). The gray area holds bytes that
have been sent but not yet acknowledged. TCP keeps these bytes in the buffer
until it receives an acknowledgment. The colored area contains bytes to be sent by
the sending TCP.
However, as we will see later in this chapter, TCP may be able to send only part of
this colored section. This could be due to the slowness of the receiving process or
perhaps to congestion in the network. Also note that after the bytes in the gray
chambers are acknowledged, the chambers are recycled and available for use by
the sending process.
This is why we show a circular buffer.

The operation of the buffer at the receiver site is simpler. The circular buffer is
divided into two areas (shown as white and colored). The white area contains
empty chambers to be filled by bytes received from the network. The colored
sections contain received bytes that can be read by the receiving process. When a
byte is read by the receiving process, the chamber is recycled and added to the
pool of empty chambers.

4 TCP segments

At the transport layer, TCP groups a number of bytes together into a packet called a
segment. TCP adds a header to each segment (for control purposes) and delivers
the segment to the IP layer for transmission. The segments are encapsulated in IP
datagrams and transmitted.
This entire operation is transparent to the receiving process. Later we will see that
segments may be received out of order, lost, or corrupted and resent. All these are
handled by TCP with the receiving process unaware of any activities. Above fig
shows how segments are created from the bytes in the buffers

23.6

5 Full-Duplex Communication
TCP offers full-duplex service, in which data can flow in both directions at the same
time. Each TCP then has a sending and receiving buffer, and segments move in
both directions

6 Connection-Oriented Service
TCP is a connection-oriented protocol. When a process at site A wants to send and
receive data from another process at site B, the following occurs:
1. The two TCPs establish a connection between them.
2. Data are exchanged in both directions.
3. The connection is terminated.

7 Reliable Service
TCP is a reliable transport protocol. It uses an acknowledgment mechanism to
check the safe and sound arrival of data. We will discuss this feature further in the
section on error control.

TCP Features
1 Numbering System
There are two fields called the sequence number and the acknowledgment
number. These two fields refer to the byte number and not the segment number.
Byte Number The bytes of data being transferred in each connection are

numbered by TCP. The numbering starts with a randomly generated number. For
example, if the random number happens to be 1057 and the total data to be sent
are 6000 bytes, the bytes are numbered from 1057 to 7056. We will see that byte
numbering is used for flow and error control.
Sequence Number After the bytes have been numbered, TCP assigns a
sequence number to each segment that is being sent. The sequence number for
each segment is the number of the first byte carried in that segment.
Acknowledgment Number The value of the acknowledgment field in a segment
defines the number of the next byte a party expects to receive. The
acknowledgment number is cumulative.

2 Flow Control
TCP, provides flow control. The receiver of the data controls the amount of data
that are to be sent by the sender. This is done to prevent the receiver from being
overwhelmed with data. The numbering system allows TCP to use a
byte-oriented flow control.

3 Error Control
To provide reliable service, TCP implements an error control mechanism.
Although error control considers a segment as the unit of data for error detection
(loss or corrupted segments), error control is byte-oriented, as we will see later.

4 Congestion Control
TCP takes into account congestion in the network. The amount of data sent by a
sender is not only controlled by the receiver (flow control), but is also determined
by the level of congestion in the network

TCP segment format

23.10

The segment consists of a 20- to 60-byte header,.
Source port address. This is a 16-bit field that defines the port number of the application
program in the host that is sending the segment.
Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment.
Sequence number. This 32-bit field defines the number assigned to the first byte of data
contained in this segment. As we said before, TCP is a stream transport protocol. To
ensure connectivity, each byte to be transmitted is numbered. The sequence number tells
the destination which byte in this sequence comprises the first byte in the segment.
During connection establishment, each party uses a random number generator to create
an initial sequence number (ISN), which is usually different in each direction.
Acknowledgment number. This 32-bit field defines the byte number that the receiver of
the segment is expecting to receive from the other party. If the receiver of the segment
has successfully received byte number x from the other party, it defines x + I as the
acknowledgment number. Acknowledgment and data can be piggybacked together.
Header length. This 4-bit field indicates the number of 4-byte words in the TCP header.
The length of the header can be between 20 and 60 bytes. Therefore, the value of this
field can be between 5 (5 x 4 =20) and 15 (15 x 4 =60).
Reserved. This is a 6-bit field reserved for future use.
Control. This field defines 6 different control bits or flags as shown in Figure. One or more
of these bits can be set at a time.

These bits enable flow control, connection establishment and termination, connection
abortion, and the mode of data transfer in TCP.

Window size. This field defines the size of the window, in bytes, that the other party
must maintain. Note that the length of this field is 16 bits, which means that the
maximum size of the window is 65,535 bytes. This value is normally referred to as the
receiving window (rwnd) and is determined by the receiver. The sender must obey the
dictation of the receiver in this case.
Checksum. This 16-bit field contains the checksum. The calculation of the checksum
for TCP follows the same procedure as the one described for UDP. However, the
inclusion of the checksum in the UDP datagram is optional, whereas the inclusion of
the checksum for TCP is mandatory. The same pseudoheader, serving the same
purpose, is added to the segment. For the TCP pseudoheader, the value for the
protocol field is 6.

Urgent pointer. This l6-bit field, which is valid only if the urgent flag is set, is used
when the segment contains urgent data. It defines the number that must be added
to the sequence number to obtain the number of the last urgent byte in the data
section of the segment. This will be discussed later in this chapter.
Options. There can be up to 40 bytes of optional information in the TCP header. We
will not discuss these options here; please refer to the reference list for more
information.

A TCP Connection

TCP is connection-oriented. A connection-oriented transport protocol establishes
a virtual path between the source and destination. All the segments belonging to a
message are then sent over this virtual path. Using a single virtual pathway for the
entire message facilitates the acknowledgment process as well as retransmission
of damaged or lost frames.

In TCP, connection-oriented transmission requires three phases:
1. connection establishment,
2. data transfer,
3. connection termination.

TCP connection establishment(3 way handshaking)

1 The client sends the first segment, a SYN segment, in which only the SYN flag is set.
NOTE:A SYN segment cannot carry data, but it consumes one sequence number.

2. The server sends the second segment, a SYN +ACK segment, with 2 flag bits set:
SYN and ACK. This segment has a dual purpose. It is a SYN segment for
communication in the other direction and serves as the
acknowledgment for the SYN segment. It consumes one sequence number. NOTE:A
SYN+ACK segment cannot carry data, but does consume one sequence number

3. The client sends the third segment. This is just an ACK segment. It acknowledges
the receipt of the second segment with the ACK flag and acknowledgment number
field. Note that the sequence number in this segment is the same as the one in the
SYN segment; the ACK segment does not consume any sequence numbers.
NOTE: An ACK segment, if carrying no data, consumes no sequence number

SYN Flooding Attack
This happens when a malicious attacker sends a large number of SYN segments
to a server, pretending that each of them is corning from a different client by faking
the source IP addresses in the datagram's.
The server, assuming that the clients are issuing an active open, allocates the
necessary resources, such as creating communication tables and setting timers.
The TCP server then sends the SYN +ACK segments to the fake clients, which are
lost. During this time, however, a lot of resources are occupied without being used.
If, during this short time, the number of SYN segments is large, the server
eventually runs out of resources and may crash. This SYN flooding attack belongs
to a type of security attack known as a denial-of-service attack, in which an
attacker monopolizes a system with so many service requests that the system
collapses and denies service to every request.
SOLUTIONS:
1 Some have imposed a limit on connection requests during a specified period

of

time.

2 Others filter out datagrams coming from unwanted source addresses.

3 One recent strategy is to postpone resource allocation until the

entire connection is set up, using what is called a cookie.

Data Transfer
After connection is established, bidirectional data transfer can take place. The client
and server can both send data and acknowledgments. Data traveling in the same
direction as an acknowledgment are carried on the same segment. The
acknowledgment is piggybacked with the data

In this example, after connection is established (not shown in the figure), the client
sends 2000 bytes of data in two segments. The server then sends 2000 bytes in
one segment. The client sends one more segment. The first three segments carry
both data and acknowledgment, but the last segment carries only an
acknowledgment because there are no more data to be sent.
Note the values of the sequence and acknowledgment numbers. The data
segments sent by the client have the PSH (push) flag set so that the server TCP
knows to deliver data to the server process as soon as they are received.

Data transfer

PUSHING DATA: Delayed transmission and delayed delivery of data may not be
acceptable by the application program.
TCP can handle such a situation. The application program at the sending site can
request a push operation. This means that the sending TCP must not wait for the
window to be filled. It must create a segment and send it immediately. The
sending TCP must also set the push bit (PSH) to let the receiving TCP know that
the segment includes data that must be delivered to the receiving application
program as soon as possible and not to wait for more data to come.

Urgent Data : TCP is a stream-oriented protocol. This means that the data are
presented from the application program to TCP as a stream of bytes. Each byte of
data has a position in the stream. However, sending application program wants a
piece of data to be read out of order by the receiving application program.

Connection Termination (three-way handshaking and four-way handshaking with a
half-close option.)

1. In a normal situation, the client TCP, after receiving a close command from the
client process, sends the first segment, a FIN segment in which the FIN flag is set.
Note that a FIN segment can include the last chunk of data sent by the client, or it
can be just a control segment as shown in Figure. If it is only a control segment, it
consumes only one sequence number.
NOTE: The FIN segment consumes one sequence number ifit does not carry data.

2 The server TCP, after receiving the FIN segment, informs its process of the
situation and sends the second segment, a FIN +ACK segment, to confirm the
receipt of the FIN segment from the client and at the same time to announce the
closing of the connection in the other direction. This segment can also contain the
last chunk of data from the server. If it does not carry data, it consumes only one
sequence number.
NOTE: The FIN +ACK segment consumes one sequence number if it does not

carry data.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt
of the FIN segment from the TCP server. This segment contains the
acknowledgment number, which is 1 plus the sequence number received in the FIN
segment from the server. This segment cannot carry data and consumes no
sequence numbers.

Half-Close In TCP, one end can stop sending data while still receiving data. This is
called a half-close. Although either end can issue a half-close, it is normally initiated
by the client. It can occur when the server needs all the data before processing can
begin.
A good example is sorting. When the client sends data to the server to be sorted,
the server needs to receive all the data before sorting can start. This means the
client, after sending all the data, can close the connection in the outbound direction.
However, the inbound direction must remain open to receive the sorted data. The
server, after receiving the data, still needs time for sorting; its outbound direction
must remain open

Connection termination using three-way handshaking

Figure 23.21 Half-close

Flow Control or TCP Sliding Window
TCP uses a sliding window, to handle flow control. The sliding window protocol
used by TCP, however, is something between the Go-Back-N and Selective
Repeat sliding window.

The sliding window protocol in TCP looks like the Go-Back-N protocol because it
does not use NAKs;
it looks like Selective Repeat because the receiver holds the out-of-order
segments until the missing ones arrive.

There are two big differences between this sliding window and the one we used at
the data link layer.
1 the sliding window of TCP is byte-oriented; the one we discussed in the data
link layer is frame-oriented.
2 the TCP's sliding window is of variable size; the one we discussed in the data
link layer was of fixed size

Sliding window

The window is opened, closed, or shrunk. These three activities, as we will see,
are in the control of the receiver (and depend on congestion in the network), not
the sender.
The sender must obey the commands of the receiver in this matter. Opening a
window means moving the right wall to the right. This allows more new bytes in the
buffer that are eligible for sending.
Closing the window means moving the left wall to the right. This means that some
bytes have been acknowledged and the sender need not worry about them
anymore.
Shrinking the window means moving the right wall to the left.

The size of the window at one end is determined by the lesser of two values:
receiver window (rwnd) or congestion window (cwnd).
The receiver window is the value advertised by the opposite end in a segment
containing acknowledgment. It is the number of bytes the other end can accept
before its buffer overflows and data are discarded.
The congestion window is a value determined by the network to avoid congestion

Window management in TCP

When the window is 0, the sender may not normally send segments, with two
exceptions.
1) urgent data may be sent, for example, to allow the user to kill the process running

on the remote machine.
2) the sender may send a 1-byte segment to force the receiver to reannounce the

next byte expected and the window size. This packet is called a window probe.
The TCP standard explicitly provides this option to prevent deadlock if a window

update ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible.

For example, in Fig. when the first 2 KB of data came in, TCP, knowing that it had a
4-KB window, would have been completely correct in just buffering the data until
another 2 KB came in, to be able to transmit a segment with a 4-KB payload. This
freedom can be used to improve performance

3.
send echo of character and/or

output

1.

Host with Telnet
client

send character Ho
st
with
Telne
t
serve
r

Remote terminal applications (e.g., Telnet) send characters to a server.
The server interprets the character and sends the output at the server to the
client.

For each character typed, you see three packets:
Client Server: Send typed character
Server Client: Echo of character (or user output) and

acknowledgement for first packet
Client Server: Acknowledgement for second packet

Delayed Acknowledgement

• TCP delays transmission of ACKs for up to 500ms

• Avoid to send ACK packets that do not carry data.
– The hope is that, within the delay, the receiver will have data ready to be sent to

the receiver. Then, the ACK can be piggybacked with a data segment
Exceptions:

• ACK should be sent for every full sized segment
• Delayed ACK is not used when packets arrive out of order

Although delayed acknowledgements reduce the load placed on the network by
the receiver, a sender that sends multiple short packets (e.g., 41-byte packets
containing 1 byte of data) is still operating inefficiently. A way to reduce this usage
is known as Nagle’s algorithm (Nagle, 1984).

31

Nagel’s Rule

Send one byte and buffer all subsequent bytes until acknowledgement is received.
Then send all buffered bytes in a single TCP segment and start buffering again until
the sent segment is acknowledged.
Nagle’s algorithm will put the many pieces in one segment, greatly reducing the
bandwidth used

Nagle’s algorithm is widely used by TCP implementations, but there are times when
it is better to disable it. In particular, in interactive games that are run over the
Internet.
A more subtle problem is that Nagle’s algorithm can sometimes interact with delayed
acknowledgements to cause a temporary deadlock: the receiver waits for data on
which to piggyback an acknowledgement, and the sender waits on the
acknowledgement to send more data.

Because of these problems, Nagle’s algorithm can be disabled (which is called the
TCP NODELAY option).

Another problem that can degrade TCP performance is the silly window syndrome
(Clark, 1982).

Clark’s solution is to prevent the receiver from sending a window update for 1 byte.
Instead, it is forced to wait until it has a decent amount of space available and
advertise that instead. Specifically, the receiver should not send a window update
until it can handle the maximum segment size it advertised when the connection
was established or until its buffer is half empty, whichever is smaller.

Furthermore, the sender can also help by not sending tiny segments. Instead, it
should wait until it can send a full segment, or at least one containing half of the
receiver’s buffer size.

The goal is for the sender not to send small segments and the receiver not to ask for
them. (Nagel + Clark). Both are used to improve TCP performance

The receiver will buffer the data until it can be passed up to the application in

order (handling out of order segments)

Cumulative acknowledgements

Error Control
TCP is a reliable transport layer protocol. This means that an application program
that delivers a stream of data to TCP relies on TCP to deliver the entire stream to the
application program on the other end in order, without error, and without any part lost
or duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting corrupted segments, lost segments, out-of-order segments, and duplicated
segments. Error control also includes a mechanism for correcting errors after they
are detected. Error detection and correction in TCP is achieved through the use of
three simple tools: checksum, acknowledgment, and time-out.

Checksum
Each segment includes a checksum field which is used to check for a corrupted
segment. If the segment is corrupted, it is discarded by the destination TCP and is
considered as lost. TCP uses a 16-bit checksum that is mandatory in every segment

Figure 23.11 Checksum calculation of a simple UDP user datagram

23.36

Acknowledgment
TCP uses acknowledgments to confirm the receipt of data segments. Control
segments that carry no data but consume a sequence number are also
acknowledged. ACK segments are never acknowledged.
ACK segments do not consume sequence numbers and are not acknowledged.

Retransmission
The heart of the error control mechanism is the retransmission of segments. When
a segment is corrupted, lost, or delayed, it is retransmitted.
In modern implementations, a retransmission occurs if the retransmission timer
expires or three duplicate ACK segments have arrived.

Retransmission After RTO (retransmission time out)

Retransmission After Three Duplicate ACK Segments (also called fast retransmission)

Out-of-Order Segments

Data may arrive out of order and be temporarily stored by the receiving TCP, but
yet guarantees that no out-of-order segment is delivered to the process

TCP Congestion Control

When the load offered to any network is more than it can handle, congestion builds
up.
The network layer detects congestion when queues grow large at routers and tries
to manage it, if only by dropping packets. It is up to the transport layer to receive
congestion feedback from the network layer and slow down the rate of traffic that it
is sending into the network.

For Congestion control, transport protocol uses an AIMD (Additive Increase
Multiplicative Decrease) control law.

TCP congestion control is based on implementing this approach using a window
called congestion window. TCP adjusts the size of the window according to the
AIMD rule.

The window size at the sender is set as follows:

Send Window = MIN (flow control window, congestion window)

where

flow control window is advertised by the receiver (rwnd) congestion window is

adjusted based on feedback from the

Modern congestion control was added to TCP largely through the efforts of Van
Jacobson (1988). It is a fascinating story. Starting in 1986, the growing popularity of
the early Internet led to the first occurrence of what became known as a
congestion collapse, a prolonged period during which good put dropped suddenly
(i.e., by more than a factor of 100) due to congestion in the network. Jacobson (and
many others) set out to understand what was happening and remedy the situation.

To start, he observed that packet loss is a suitable signal of congestion. This signal
comes a little late (as the network is already congested) but it is quite dependable

At the beginning how sender knows at what speed receiver can receive the
packets?

The key observation is this: the acknowledgements return to the sender at about
the rate that packets can be sent over the slowest link in the path. This is
precisely the rate that the sender wants to use. If it injects new packets into the
network at this rate, they will be sent as fast as the slow link permits, but they
will not queue up and congest any router along the path. This timing is known as
an ack clock. It is an essential part of TCP. By using an ack clock, TCP
smoothes out traffic and avoids unnecessary queues at routers. This is first
consideration

A second consideration is that the AIMD rule will take a very long time to reach a
good operating point on fast networks if the congestion window is started from a
small size

Instead, the solution Jacobson chose to handle both of these considerations is a
mix of linear and multiplicative increase.

SLOW-START

Whenever a packet loss is detected, for example, by a timeout, the slow start
threshold is set to be half of the congestion window and the entire process is
restarted.

Congestion avoidance phase is started if cwnd has reached the slow start
threshold value

Whenever the slow start threshold is crossed, TCP switches from slow start to
additive increase. In this mode, the congestion window is increased by one
segment every round-trip time.

43

Responses to Congestion

• So, TCP assumes there is congestion if it detects a

packet loss

• A TCP sender can detect lost packets via:

• Timeout of a retransmission timer

• Receipt of a duplicate ACK

• TCP interprets a Timeout as a binary congestion signal. When a timeout occurs,

the sender performs:

– cwnd is reset to one:

cwnd = 1

– ssthresh is set to half the current size of the congestion window:

ssthressh = cwnd / 2

– and slow-start is entered

45

Fast Retransmit

• If three or more duplicate ACKs are

received in a row, the TCP sender

believes that a segment has been

lost.

• Then TCP performs a retransmission

of what seems to be the missing

segment, without waiting for a

timeout to happen.

• Enter slow start:

ssthresh = cwnd/2 cwnd = 1

Flavors of TCP Congestion

Control

• TCP Tahoe (1988)

– Slow Start

– Congestion Avoidance

– Fast Retransmit

• TCP Reno (1990) (TCP Tahoe+FR)

– Fast Recovery

• New Reno (1996)

• SACK (1996) (SACK (Selective

ACKnowledgements))

• RED (Floyd and Jacobson 1993)

47

The use of ECN (Explicit Congestion Notification) in addition to packet loss as a
congestion signal. ECN is an IP layer mechanism to notify hosts of congestion.

The sender tells the receiver that it has heard the signal by using the CWR
(Congestion Window Reduced) flag.

USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does not add
anything to the services of IP except to provide
process-to-process communication instead of host-to- host
communication.
Topics discussed in this section:
Well-Known Ports for UDP User
Datagram
Checksum UDP
Operation Use of UDP

Table 23.1 Well-known ports used with UDP

Figure 23.9 User datagram format

Checksum (OPTIONAL,IF NOT USED SET ALL 1’S DEFAULT)

The UDP checksum calculation is different from the one for IP and ICMP. Here the
checksum includes three sections: a pseudo header, the UDP header, and the data
coming from the application layer.
The pseudo header is the part of the header of the IP packet in which the user
datagram is to be encapsulated with some fields filled with Os

If the checksum does not include the pseudo header, a user datagram may arrive safe
and sound. However, if the IP header is corrupted, it may be delivered to the wrong
host.
The protocol field is added to ensure that the packet belongs to UDP, and not to other
transport-layer protocols.

Figure 23.10 Pseudoheader for checksum calculation

UDP Operation

Connectionless Services

UDP provides a connectionless service. This means that each user datagram sent by UDP is

an independent datagram. There is no relationship between the different user datagrams

even if they are coming from the same source process and going to the same destination

program. The user datagrams are not numbered. Also, there is no connection establishment

and no connection termination, as is the case for TCP. This means that each user datagram

can travel on a different path.

Flow and Error Control

UDP is a very simple, unreliable transport protocol. There is no flow control and hence no

window mechanism. The receiver may overflow with incoming messages. There is no error

control mechanism in UDP except for the checksum. This means that the sender does not

know if a message has been lost or duplicated. When the receiver detects an error through

the checksum, the user datagram is silently discarded. The lack of flow control and error

control

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and decapsulates

messages in an IP datagram.

Figure 23.11 shows the checksum calculation for a very small
user datagram with only 7 bytes of data. Because the number of
bytes of data is odd, padding is added for checksum calculation.
The pseudoheader as well as the padding will be dropped when
the user datagram is delivered to IP.

Figure 23.11 Checksum calculation of a simple UDP user datagram

Figure 23.12 Queues in UDP

Remote Procedure Call

The key work was done by Birrell and Nelson (1984). In a nutshell, what Birrell and
Nelson suggested was allowing programs to call procedures located on remote
hosts. When a process on machine 1 calls a procedure on machine 2, the calling
process on 1 is suspended and execution of the called procedure takes place on 2.
Information can be transported from the caller to the callee in the parameters and
can come back in the procedure result. No message passing is visible to the
application programmer. This technique is known as RPC (Remote Procedure
Call). Traditionally, the calling procedure is known as the client and the called
procedure is known as the server, and we will use those names here too.

to call a remote procedure, the client program must be bound with a small library
procedure, called the client stub, that represents the server procedure in the client’s
address space. Similarly, the server is bound with a procedure called the server
stub. These procedures hide the fact that the procedure call from the client to the
server is not local

Step 1 is the client calling the client stub. This call is a local procedure call, with the
parameters pushed onto the stack in the normal way.
Step 2 is the client stub packing the parameters into a message and making a
system call to send the message. Packing the parameters is called marshaling.
Step 3 is the operating system sending the message from the client machine to the
server machine.
Step 4 is the operating system passing the incoming packet to the server stub.
Finally, step 5 is the server stub calling the server procedure with the unmarshaled
parameters.
The reply traces the same path in the other direction.

Problems with RPC:

1 With RPC, passing pointers is impossible because the client and server are in
different address spaces.
2 It is essentially impossible for the client stub to marshal the parameters: it has
no way of determining how large they are.
3 A third problem is that it is not always possible to deduce the types of the
parameters, not even from a formal specification or the code itself.(exa: printf)
4 A fourth problem relates to the use of global variables. Normally, the calling and
called procedure can communicate by using global variables, in addition to
communicating via parameters. But if the called procedure is moved to a remote
machine, the code will fail because the global variables are no longer shared

Real-Time Transport Protocols
Client-server RPC is one area in which UDP is widely used. Another one is
for real-time multimedia applications.

Internet radio, Internet
telephony,
music-on-demand,
videoconferencing,
video-on-demand,
and other multimedia applications became more commonplace, people have

discovered that each application was reinventing more or less the same real-time
transport protocol.

It gradually became clear that having a generic real-time transport protocol for
multiple applications would be a good idea.
Thus was RTP (Real-time Transport Protocol) born. It is described in RFC 3550
and is now in widespread use for multimedia applications. We will describe two
aspects of real-time transport.
The first is the RTP protocol for transporting audio and video data in packets.
The second is the processing that takes place, mostly at the receiver, to play out
the audio and video at the right time..

RTP normally runs in user space over UDP (in the operating system).
It operates as follows. The multimedia application consists of multiple audio, video,
text, and possibly other streams. These are fed into the RTP library, which is in user
space along with the application. This library multiplexes the streams and encodes
them in RTP packets, which it stuffs into a socket.
On the operating system side of the socket, UDP packets are generated to wrap the
RTP packets and handed to IP for transmission over a link such as Ethernet.
The reverse process happens at the receiver. The multimedia application eventually
receives multimedia data from the RTP library. It is responsible for playing out the
media. The protocol stack for this situation is shown in Fig. 6-30(a). The packet
nesting is shown in Fig. 6-30(b).

RTP—The Real-time Transport Protocol
The basic function of RTP is to multiplex several real-time data streams onto
a single stream of UDP packets. The UDP stream can be sent to a single
destination (unicasting) or to multiple destinations (multicasting).
Because RTP just uses normal UDP, its packets are not treated specially by the
routers unless some normal IP quality-of-service features are enabled. In particular,
there are no special guarantees about delivery, and packets may be lost, delayed,
corrupted, etc.

The RTP format contains several features.
Each packet sent in an RTP stream is given a number one higher than its
predecessor. This numbering allows the destination to determine if any packets are
missing.
RTP has no acknowledgements, and no mechanism to request retransmissions.
Each RTP payload may contain multiple samples, and they may be coded any way
that the application wants. To allow for interworking, RTP defines several profiles
(e.g., a single audio stream), and for each profile, multiple encoding formats may be
allowed
Another facility many real-time applications need is time stamping. Not only does
time stamping reduce the effects of variation in network delay, but it

It consists of three 32-bit words and potentially some extensions. The first word

contains the Version field, which is already at 2.

The P bit indicates that the packet has been padded to a multiple of 4 bytes. The last

padding byte tells how many bytes were added.

The X bit indicates that an extension header is present.

The CC field tells how many contributing sources are present, from 0 to 15

The M bit is an application-specific marker bit. It can be used to mark the start of a

video frame, the start of a word in an audio channel, or something else that the

application understands.

The Payload type field tells which encoding algorithm has been used (e.g.,

uncompressed 8-bit audio, MP3, etc.). Since every packet carries this field, the

encoding can change during transmission.

The Sequence number is just a counter that is incremented on each RTP packet sent.

It is used to detect lost packets.

The Timestamp, this value can help reduce timing variability called jitter at the

receiver by decoupling the playback from the packet arrival time.

The Synchronization source identifier tells which stream the packet belongs to. It is

the method used to multiplex and demultiplex multiple data streams onto a single

stream of UDP packets.

Finally, the Contributing source identifiers, if any, are used when

RTCP—The Real-time Transport Control Protocol
RTP has a little sister protocol (little sibling protocol?) called RTCP (Real time
Transport Control Protocol). It is defined along with RTP in RFC 3550 and handles
feedback, synchronization, and the user interface. It does not transport any media
samples.
The first function can be used to provide feedback on delay, variation in delay or jitter,
bandwidth, congestion, and other network properties to the sources. This information
can be used by the encoding process to increase the data rate (and give better
quality) when the network is functioning well and to cut back the data rate when there
is trouble in the network. By providing continuous feedback, It provides the best
quality
The Payload type field is used to tell the destination what encoding algorithm is used
for the current packet, making it possible to vary it on demand.
RTCP also handles inter stream synchronization. The problem is that different

streams may use different clocks, with different granularities and different drift

rates. RTCP can be used to keep them in sync.

Finally, RTCP provides a way for naming the various sources (e.g., in ASCII text).

This information can be displayed on the receiver’s screen to indicate who is talking

at the moment.

Playout with Buffering and Jitter Control
Once the media information reaches the receiver, it must be played out at the right
time. Even if the packets are injected with exactly the right intervals between them at
the sender, they will reach the receiver with different relative times. This variation in
delay is called jitter. Even a small amount of packet jitter can cause distracting
media artifacts, such as jerky video frames and unintelligible audio, if the media is
simply played out as it arrives.
The solution to this problem is to buffer packets at the receiver before they are
played out to reduce the jitter.

A key consideration for smooth playout is the playback point, or how long to wait

at the receiver for media before playing it out. Deciding how long to wait depends

on the jitter. The difference between a low-jitter and high-jitter connection is

shown in Fig. The average delay may not differ greatly between the two, but if

there is high jitter the playback point may need to be much further out to capture

99% of the packets than if there is low jitter.

One way to avoid this problem for audio is to adapt the playback point between

talk spurts, in the gaps in a conversation. No one will notice the difference

between a short and slightly longer silence

TELNET
It is client/server application program. TELNET is an abbreviation for TErminaL
NETwork. TELNET enables the establishment of a connection to a remote system in
such a way that the local terminal appears to be a terminal at the remote system.

Timesharing Environment

A large computer supports multiple users. The interaction between a user and the

computer occurs through a terminal, which is usually a combination of keyboard,

monitor, and mouse.

Logging

To access the system, the user logs into the system with a user id or log-in name. The

system also includes password checking to prevent an unauthorized user from accessing

the resources.

Local login Remote

login

When a user logs into a local timesharing system, it is called local log-in. As a user types at

a terminal or at a workstation running a terminal emulator, the keystrokes are accepted by

the terminal driver. The terminal driver passes the characters to the operating system. The

operating system, in turn, interprets the combination of characters and invokes the desired

application program or utility.

When a user wants to access an application program or utility located on a remote Machine,

it is called remote log-in. Here the TELNET client and server programs come into use. The

user sends the keystrokes to the terminal driver, where the local operating system accepts

the characters but does not interpret them. The characters are sent to the TELNET client,

which transforms the characters to a universal character set called network virtual

terminal (NVT) characters and delivers them to the local TCP/IP protocol stack.

The commands or text, in NVT form, travel through the Internet and arrive at the TCP/IP

stack at the remote machine. Here the characters are delivered to the operating system and

passed to the TELNET server, which changes the characters to the corresponding characters

understandable by the remote computer. However, the characters cannot be passed directly

to the operating system because the remote operating system is not designed to receive

characters from a TELNET server: It is designed to receive characters from a terminal driver.

The solution is to add a piece of

Concept of NVT(network virtual terminal)

26.75

WWW and HTTP

27.76

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27-1 ARCHITECTURE

The WWW today is a distributed client/server service, in
which a client using a browser can access a service using a
server. However, the service provided is distributed over many
locations called sites as shown in fig.
Topics discussed in this section:
Client (Browser) Server
Uniform Resource Locator
Cookies

Figure 27.1 Architecture of WWW

Client (Browser)

A variety of vendors offer commercial browsers that interpret and display a Web

document,and all use nearly the same architecture.

Each browser usually consists of three parts: a controller, client protocol, and

interpreters.

The controller receives input from the keyboard or the mouse and uses the client

programs to access the document.

After the document has been accessed, the controller uses one of the

interpreters to display the document on the screen. The interpreter can be

HTML, Java, or JavaScript, depending on the type of document

The client protocol can be one of the protocols described previously such as FTP

or HTTP.

Server

The Web page is stored at the server. Each time a client request arrives, the

corresponding document is sent to the client. To improve efficiency, servers

normally store requested files in a cache in memory; memory is faster to access

than disk. A server can also become more efficient through multithreading or

multiprocessing. In this case, a server can answer more than one

Figure 27.2 Browser

27.80

Uniform Resource Locator

A client that wants to access a Web page needs the address. To facilitate the access

of documents distributed throughout the world, HTTP uses locators. The uniform

resource locator (URL) is a standard for specifying any kind of information on the

Internet. The URL defines four things: protocol, host computer, port, and path.

The protocol is the client/server program used to retrieve the document.

Many different protocols can retrieve a document; among them are FTP or HTTP.

The most common today is HTTP.

The host is the computer on which the information is located, although the name of

the computer can be an alias. Web pages are usually stored in computers, and

computers are given alias names that usually begin with the characters "www".

The URL can optionally contain the port number of the server. If the port is

included, it is inserted between the host and the path, and it is separated from the

host by a colon.

Path is the pathname of the file where the information is located. Note that the

path can itself contain slashes that, in the UNIX operating system, separate the

directories from the subdirectories and files.

Figure 27.3 URL

An HTTP cookie (also called web cookie, Internetcookie, browser cookie or

simply cookie, the latter which is not to be confused with the literal definition), is a

small piece of data sent from a website and stored in a user's web browser while the

user is browsing that website

27-2 WEB DOCUMENTS

The documents in the WWW can be grouped into three broad
categories: static, dynamic, and active. The category is based
on the time at which the contents of the document are
determined.

Topics discussed in this section:
Static Documents Dynamic
Documents Active
Documents

Static Documents

Static documents are fixed-content documents that are created and stored in a

server. The client can get only a copy of the document. When a client accesses the

document, a copy of the document is sent. The user can then use a browsing

program to display the document

Figure 27.5 Boldface tags

HTML

Hypertext Markup Language (HTML) is a language for creating Web pages.

Figure 27.7 Beginning and ending tags

Dynamic Documents

A dynamic document is created by a Web server whenever a browser requests the

document. When a request arrives, the Web server runs an application program or

a script that creates the dynamic document. The server returns the output of the

program or script as a response to the browser that requested the document.

A very simple example of a dynamic document is the retrieval of the time and

date from a server. Time and date are kinds of information that are dynamic in

that they change from moment to moment. The client can ask the server to run a

program such as the date program in UNIX and send the result of the program to

the client.

Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) is a technology that creates and handles

dynamic documents.

Hypertext Preprocessor (pHP), which uses the Perl language; Java Server Pages

(JSP), which uses the Java language for scripting; Active Server Pages (ASP),

a Microsoft product which uses Visual Basic language for scripting; and

ColdFusion, which embeds SQL database queries in the HTML document

Figure 27.8 Dynamic document using CGI

Figure 27.9 Dynamic document using server-site script

Figure 27.10 Active document using Java applet

Active Documents

For many applications, we need a program or a script to be run at the client site.

These are called active documents

Figure 27.11 Active document using client-site script

HTTP version 1.1 specifies a persistent connection by default.

DNS (Domain Name System)
To identify an entity, TCP/IP protocols use the IP address, which uniquely identifies
the connection of a host to the Internet. However, people prefer to use names
instead of numeric addresses. Therefore, we need a system that can map a name to
an address or an address to a name.

NAME SPACE
A name space that maps each address to a unique name can be organized in two

ways: fiat or hierarchical.
Flat Name Space
In a flat name space, a name is assigned to an address. A name in this space is a
sequence of characters without structure.

Hierarchical Name Space
In a hierarchical name space, each name is made of several parts. The first part can
define the nature of the organization, the second part can define the name of an
organization, the third part can define departments in the organization, and so on.

Exa: challenger.jhda.edu, challenger.berkeley.edu, and challenger.smart.com

DOMAIN NAME SPACE
To have a hierarchical name space, a domain name space was designed. In this
design the names are defined in an inverted-tree structure with the root at the top.
The tree can have only 128 levels: level 0 (root) to level 127.

Label
Each node in the tree has a label, which is a string with a maximum of 63
characters. The root label is a null string (empty string). DNS requires that children
of a node (nodes that branch from the same node) have different labels, which
guarantees the uniqueness of the domain names.
Domain Name

Each node in the tree has a domain name. A full domain name is a sequence of
labels separated by dots (.). The domain names are always read from the node up
to the root. The last label is the label of the root (null). This means that a full domain
name always ends in a null label, which means the last character is a dot because
the null string is nothing. Below Figure shows some domain names

Domain names and labels

Domain
A domain is a subtree of the domain name space. The name of the domain is the
domain name of the node at the top of the subtree.

DISTRIBUTION OF NAME SPACE:
The information contained in the domain name space must be stored. However, it is
very inefficient and also unreliable to have just one computer store such a huge
amount of information. In this section, we discuss the distribution of the domain name
space

1 Hierarchy of Name Servers
distribute the information among many computers called DNS servers. we let the

root stand alone and create as many domains (subtrees) as there are first-level

nodes

2 Zone
Since the complete domain name hierarchy cannot be stored on a single server, it is
divided among many servers. What a server is responsible for or has authority over
is called a zone. We can define a zone as a contiguous part of the entire tree

3 Root Server
A root server is a server whose zone consists of the whole tree. A root server
usually does not store any information about domains but delegates its authority to
other servers, keeping references to those servers. There are several root servers,
each covering the whole domain name space. The servers are distributed all around
the world.

4 Primary and Secondary Servers
A primary server is a server that stores a file about the zone for which it is an

authority. It is responsible for creating, maintaining, and updating the zone file. It
stores the zone file on a local disk

A secondary server is a server that transfers the complete information about a zone
from another server (primary or secondary) and stores the file on its local disk. The
secondary server neither creates nor updates the zone files

DNS IN THE INTERNET
DNS is a protocol that can be used in different platforms. In the Internet, the domain
name space (tree) is divided into three different sections: generic domains, country
domains, and the inverse domain

1 Generic Domains
The generic domains define registered hosts according to their generic behavior.
Each node in the tree defines a domain, which is an index to the domain name
space database

2 Country Domains
The country domains section uses two-character country abbreviations (e.g., us for
United States). Second labels can be organizational, or they can be more specific,
national designations. The United States, for example, uses state abbreviations as a
subdivision of us (e.g., ca.us.).

3 Inverse Domain
The inverse domain is used to map an address to a name.

RESOLUTION
Mapping a name to an address or an address to a name is called name- address
resolution
1 Resolver

DNS is designed as a client/server application. A host that needs to map an address

to a name or a name to an address calls a DNS client called a resolver. The resolver

accesses the closest DNS server with a mapping request. If the server has the

information, it satisfies the resolver; otherwise, it either refers the resolver to

other servers or asks other servers to provide the information.

2 Mapping Names to Addresses

In this case, the server checks the generic domains or the country domains to find

the mapping.

3 Mapping Addresses to Names

To answer queries of this kind, DNS uses the inverse domain 4 Recursive

Resolution

The client (resolver) can ask for a recursive answer from a name server. This means

that the resolver expects the server to supply the final answer.. When the query is

finally resolved, the response travels back until it finally reaches the requesting

client. This is called recursive resolution and is shown in FIG

5 Iterative Resolution

If the client does not ask for a recursive answer, the mapping can be done

iteratively. If the server is an authority for the name, it sends the answer. If it is

not, it returns (to the client) the IP address of the server that it thinks can

resolve the query

6 Caching

Each time a server receives a query for a name that is not in its domain, it needs

to search its database for a server IP address. Reduction of this search time would

increase efficiency. DNS handles this with a mechanism called caching

DNS MESSAGES
DNS has two types of messages: query and response. Both types have the same
format.
The query message consists of a header,

and question records; the
response message consists of a header,

question records, answer
records, authoritative records,
and additional records

Header
Both query and response messages have the same header format with some fields set to zero
for the query messages. The header is 12 bytes,

TYPES OF RECORDS
The question records are used in the question section of the query and response
messages. The resource records are used in the answer, authoritative, and
additional information sections of the response message.

Question Record
A question record is used by the client to get information from a server..
Resource Record
Each domain name (each node on the tree) is associated with a record called the
resource record. The server database consists of resource records. Resource
records are also what is returned by the server to the client.

REGISTRARS
How are new domains added to DNS? This is done through a registrar, a
commercial entity accredited by ICANN. A registrar first verifies that the
requested domain name is unique and then enters it into the DNS database. A
fee is charged. Today, there are many registrars; their names and addresses can
be found at http://www.intenic.net

http://www.intenic.net/

DYNAMIC DOMAIN NAME SYSTEM (DDNS)
In DNS, when there is a change, such as adding a new host, removing a host, or

changing an IP address, the change must be made to the DNS master file. The size
of today's Internet does not allow for this kind of manual operation.
The DNS master file must be updated dynamically. The Dynamic Domain Name
System (DDNS) therefore was devised to respond to this need.

ENCAPSULATION
DNS can use either UDP or TCP. In both cases the well-known port used by the server
is port 53.

